

暗物质直接探测实验

马豪

清华大学工程物理系 2024.05.10

第三届地下和空间粒子物理与宇宙物理前沿问题研讨会 西昌 2024年5月

暗物质及其探测
暗物质直接探测实验
低温固体探测器
电荷耦合器件
液态稀有气体探测器
其它探测技术

暗物质是笼罩20世纪末和21世纪初现代物理学的最大乌云,它 将预示着物理学的又一次革命。—— 李政道

• 众多候选者,覆盖极其宽广的质量区域

Samuel Velasco/Quanta Magazine

WIMPs

AXIONS

COMPOSITE DARK MATTER

STERILE NEUTRINOS

SIMPs

ASYMMETRIC DARK MATTER

Artwork by Sandbox Studio, Chicago/Symmetry Magazine

暗物质探测实验

- 直接探测实验: 暗物质粒子入射, 与探测器靶原子(核)发生散射的信号
- 间接探测实验: 探测宇宙暗物质衰变或湮灭的产物
- 对撞机探测实验: 高能粒子对撞产生暗物质

- WIMP粒子与靶原子(核)散射
 沉积能量少、作用概率低
- 低本底、低阈值

宇宙射线

中子

混凝土

暗物质直接探测实验进展

- 国际地下实验室热点研究方向
- 多种探测器技术"百花齐放"
- 趋势:更低本底、更低阈值、更大规模

- SuperCDMS
- Edelweiss
- CRESST
- CDEX

- 实验室: Soudan → SNOLAB
- 探测器:高纯Ge、Si
 - ○工作温度:~15 mK
 - iZIP: 声子+电离, 电子反冲本底甄别
 - HV:声子放大,更低阈值,~100V (eg. CDMSLite, 1.5GeV/c²) Radon

Interleaved Z-sensitive Ionization and Phonon (iZIP) detectors

12 phonon channels, 4 charge channels Low bias voltage (~ 6 V) ER/NR discrimination

	IZIP	
	Si	Ge
σ_{ph}	19 eV	33 eV
σ_{ch}	180 eV	160 eV
Threshold _{ph}	175 eV	350 eV
	ΗV	
	Si	Ge
σ_{ph}	13 eV	34 eV
Threshold _{ph}	100 eV	100 eV

arXiv:2203.08463

SuperCDMS实验

- 探测器@SNOLAB(initial payload) Φ100x33.3 mm, 1.39(0.61)kg Ge(Si)
 - Ge: 更大曝光量
 - Si: 更低阈值(100eV核反冲测量 PRL 131, 091801, 2023)
 - ~30kg, 6X4 det,12 iZIP(10+2), 12 HV(8+4)

实验计划

- Infrastructure at SNOLAB under construction
- Full-tower testing underway at CUTE and SLAC
- First science run with initial payload early 2024
- First results 2025

SuperCDMS实验

• 物理目标

- WIMPs (incl. AM, Migdal...)
- $\circ 10^{-43} \sim 10^{-44} \, cm^2$
- 暗光子、类轴子

• 挑战

- ○精细能带结构
- 晶体杂质: 能量部分沉积
- ○放射性本底:~ eV范围
- 红外和光学光子成为显著本底
- 暗/漏电流成为显著本底,且在 阈值附近主导本底

"Traditional" NR	iZIP, "background free"	$\gtrsim 5 \text{ GeV}$
Low Threshold NR	iZIP, limited discrimination	$\gtrsim 1 \text{ GeV}$
HV Mode	HV, no discrimination	~0.3 - 10 GeV
Electron recoil	HV, no discrimination	~0.5MeV - 10 GeV
Absorption (Dark Photons, ALPs)	HV, no discrimination	~1 eV - 500 keV

Edelweiss实验

- 实验室: Modane
- 探测器:高纯Ge
 工作温度:18 mK
 Φ70x40 mm,~870g/det,~20 kg
 双相:电离+量热

H. Lattaud, IDM 2022 J. Gascon, IDM 2018; TAUP 2019 E. Armengaud et al, JINST 2017

detector chamber internal PE shield at 1 K

internal lead shield at 1 K

FET boxes at 100 K

Bolometer boxes at 300 K

Migdal effect analysis

Edelweiss实验

- 技术挑战
 - ○探测器:~1kg
 - 电离分辨率: 20 eVee
 - 声子分辨率: 20→10 eV
 - FET(100K) \rightarrow HEMT(1K)
 - 高压 (声子放大) 模式运行
 - 33+200g运行@Modane
 - 200g: NbSi Transistor Edge Sensor (TES)
 - 新型探测器技术CRYOSEL
 - ∘ 40g Ge detector, $\sigma_{\pm 7}$ = 20 eV, 200 V bias
 - 降低Heat-only本底
- 物理目标
 - MeV-GeV, 电子反冲、核反冲
 - 双相: 𝒴(10⁻⁴³)cm² @ 1GeV/c²

H. Kluck, TAUP 2019 J. Cooley, IDM 2020 C. Strandhagen IDM 2022

CRESST实验

- 实验室: LNGS
- 探测器: CaWO₄晶体等
 工作温度: 15 mK
 ~24g/det, ~240g
 双相: 闪烁光+量热

1m

CRESST实验

- CRESST-III phase2
 - Run3: 2020.11-2021.8
 - SD results from Li1 detector

Name	Material	Holding	Foil	Mass	Threshold
Comm2	$CaWO_4$	bronze clamps	no	24.5 g	29 eV
TUM93A	$CaWO_4$	$2 \text{ Cu} + 1 \text{ CaWO}_4$	yes	24.5 g	54 eV
Sapp1	Al_2O_3	Cu sticks	no	15.9 g	157 eV
Sapp2	AI_2O_3	Cu sticks	yes	15.9 g	52 eV
Li1	LiAIO ₂	Cu sticks	yes	11.2 g	84 eV
Si2	Si	Cu sticks	no	0.35 g	10 eV

Neutron-only **Proton-only** 计划 EDELWEISS-Surf 2019 CDMSlite 2017 CDMSlite 201 Borexino 2019 CRESST-III 2019 Collar 2018 PICO-60 2019 LUX 2016 CRESST LIAIO, 2020 above ground CRESST LiAIO, 2020 above ground CRESST-III Li2 2022 CRESST-III Li2 2022 CRESST-III Li1 2022 CRESST-III Li1 2022 $\circ \rightarrow \sim 2 \text{ kg}(100 \text{ det})$ 10¹¹ (bp) section (bp) 10¹⁰ 10⁹ 10⁸ 10⁸ 10⁸ -25 10^{1} (a) 10¹⁰ 10⁻²⁶ Dark matter particle-nucleon cross section (cm^2) (cm^2) -26 10 10⁻²⁷ 10⁻²⁷ section ○ DAQ升级, 2023 10 section 10⁻²⁸ 10⁻²⁸ 10' 10⁻²⁹ 10⁻²⁹ cross ○ 探测器技术研发 10 cross 10 particle-nucleon cross 10⁻³⁰ 10⁻³⁰ 10 10' 10⁻³¹ nucleon noleon 10⁻³¹ ○ 更低阈值 10 10 10⁻³² 10⁻³² 10^{4} 10' 10⁻³³ 10⁻³³ Dark matter particle-r 10² 10⁻¹ 10⁻² 10³ 10^{3} ○ 更纯晶体... particle 10-34 10⁻³⁴ 10^{2} ¹10⁻³⁵ 10⁻³⁵ ○ 低能区本底研究 10 matter | best between best between Dark matter 10⁻³⁶ 10⁻³⁶ **√10**⁻³⁷ 0.25 and 2.5 GeV/c² ~0.16 and 1.5 GeV/c² 10⁻³⁷ 。200eV以下能谱抬升 ਸੂੰ 10⁻¹ 010⁻² -10⁻³⁸ 10⁻³⁸ 0.2 0.3 2 3 4 5 1 2 3 4 5 Dark matter particle mass (GeV/c²) 待解释 0.2 0.3 6 Dark matter particle mass (GeV/c²

EXCESS Workshops

CDEX实验(盘古计划)

- 实验室: CJPL
- F测器: 高纯锗

 工作温度: 77 K
 > 10 kg PPC Ge (单相: 电离, ~1kg/det)
 - ○冷指制冷+固体屏蔽→液氮浸泡(制冷+屏蔽)

液氮直接浸泡

CDEX results

- 更低本底、更低阈值 _○ ~2 cts/(keV·kg·day) , 160 eV_{ee}
- 多物理通道
 - SI/SD (PRL 120, 2018)
 - 。 Migdal效应 (PRL 123, 2019-1)
 - 年度调制效应 (PRL 123, 2019-2)
 - 太阳轴子 / 轴子暗物质 (PRD 101, 2020)
 - 太阳暗光子 / 暗光子暗物质 (PRL 124, 2020)
 - 电子反冲 (PRL 129, 2022-1)
 - 。宇宙线加速 (PRD 106, 2022)
 - 奇异暗物质(PRL 129, 2022-2)
 - 太阳反射暗物质电子反冲 (PRL 132, 2024)

- CDEX-50

 CJPL-II,大型液氮恒温器
 ~50 kg阵列PPC/BEGe
- 暗物质探测灵敏度
 - ○本底 < 0.01 cts/(keV·kg·day)
 - 阈值 100-200 eV
 - 曝光量 ~50 kg·year
 - $_{\odot}$ SI Sensitivity ~10⁻⁴⁴ cm²

电荷耦合器件 (CCD) 探测技术

- DAMIC
- SENSEI
- OSCURA

20

DAMIC实验 (Dark Matter In CCDs)

10³

10²

A.E. Chavarria, TAUP 2019 P. Privitera, TAUP 2019 D. Norcini, IDM 2022 P. Privitera, TAUP 2023

- 实验室: SNOLAB
- 探测器: CCD

 7 CCDs, ~40g
 工作温度: ~100 K
 径迹本底甄别能力
 非常低的噪声和暗电流
 < 0.001 e/pixel/d
 - $\circ 2x10^{-22} \text{ A/cm}^2$

Pixel charge distribution $\sigma = 5.9 \text{ eV}$ $= 1.6 \text{ e}^{-13}$ σ 13 26Energy / eV

pixels

10

15

Energy measured by pixel [keV]

20

CCD Box

External shield

DAMIC实验

• **DAMIC**-Modane

- $_{\odot}$ 200 CCDs, ~3.5 g/det, 6k x 1.5k pixels
- Skipper读出, 0.2e- (< 1eV) at 650 skips
- 原型系统
 - 2个 6k x 4k CCDs, ~17g靶质量
 - 电子反冲 (PRL 130, 2023)
 - 。日调制效应 (arXiv:2307.07251)

SENSEI实验

- 实验室: MINOS Hall @Fermilab
- 探测器: skipper CCD
 高阻性硅, 675 µm厚
 1.59 × 9.42 cm², ~2 g
 - ~5.5 Mpixels of 15x15x675 μm³ each ○ 亚电子噪声

L. Barak et al, PRL 2020

SENSEI实验@SNOLAB

• 现状与计划

- 12 skipper CCDs (~25g) deployed
- 冷指制冷, 125-145K
- \rightarrow 48 skipper CCDs (100g) in total

23

arXiv:2312.13342

OSCURA实验

- 美国CCD实验组联合组成
- →10 kg skipper CCDs,浸泡在液氮中
- \rightarrow 2-order bkg reduction
- 电子反冲, 30 kg-y

3

arXiv:2202.10518

LN₂ pressure vessel @ ~450 psi

- 低温液氙探测技术
 XENONnT
 LZ
 - PandaX
- 低温液氩探测技术
 DarkSide-20k
- 低温液氦探测技术

液氙TPC探测实验 (G2)

PandaX-4T @CJPL 3.7t LXe target Running 2020LZ @SURF 7t LXe target Running 2021-

XENONnT @LNGS 6t LXe target Running 2021-

WIMP-Nucleon SI Exclusion Limits from PandaX

- Stable data running period: 95.0 calendar days (0.63 ton-yr exposure)
- Sensitivity improved from PandaX-II final analysis by 2.6 times at 40 GeV/c²
- Dived into previously unexplored territory, Approaching the "low E" neutrino floor.
- After tritium removal, expecting another order improvement with a 6 ton-yr exposure.

From N. Zhou

Low mass DM limits from PandaX

- Lower S1 selection threshold to 2 hits $(2 \rightarrow 0.3 \text{ PE})$
- Strongest constraints on WIMP in 3-10 GeV region

LZ results

- SR1 data taking 23 Dec 2021 to 18 Apr 2022
- 60 live days exposure using a fiducial mass of 5.5 t
- Highest sensitivity to SI WIMP-nucleon scattering for masses greater than 9 GeV/c²
- Planning for a total 1000 live days (x 17 more exposure than SR1

XENONnT results

Knut Dundas Morå, IDM 2022 F. Gao, private communication Z. Xu, TAUP 2023

- 1.16 ton-yr exposure (~2 times XENON1T ER search) July 6th-Nov 11th 2021
- Bkg rate: (16.1 ± 0.3) events/(ton-yr-keV) (~20% XENON1T)

XENON1T observed a peak in its ER spectrum below ~7 keV

Most likely explanation of XENON1T excess is a small ³H contamination. XENONnT, taking steps to reduce tritium outgassing sees no excess.

³H control

Two months of outgassing, and purification of gaseous xenon with Zr getters and 3 weeks of gaseous xenon cleaning reduces possible hydrogen contamination.

XENONnT results

● WIMP分析(SR0)
 ○ 1.09±0.03 ton yr
 ○ 2.58×10⁻⁴⁷ cm² @ 28 GeV/c²

SR1

- Lower ²¹⁴Pb background rate (~ 50% SR0 level)
- Insert Gd into neutron veto to further improve tagging efficiency
- More exposure

Upper limit on spin-independent WIMP-nucleon cross section at 90% confidence level

下一代液氙实验(G3)

PandaX-30T: 关键技术预研

DARWIN: DARk matter WImp search with liquid xenoN

- Two-phase LXe/GXe TPC
- 50 t total LXe (40 t target)
- Top and bottom photosensors (~1800 3" XENON PMTs)
- PTFE reflectors and Cu field-shaping rings
- In-situ purification plus krypton and radon distillation (background mitigation)
- Veto detectors: water Cerenkov for muons with Gd doping for neutrons

下一代液氙实验(G3)

XLZD Consortium (Xenon LUX Zeplin DARWIN)

- World leading researchers with more than twenty years of successfully building liquid xenon Dark Matter detectors unite forces in the XLZD Consortium
- MOU signed July 6, 2021 by 106 research group leaders from 16 countries
- **Community whitepaper** with combined science goals, background considerations, priorities posted March 2022, **arXiv:2203.02309**

A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

液氩TPC

- DarkSide-20k (20t fiducial mass)
 - o DS50+DEAP-3600+ArDM+MiniCLEAN
 - 50t UAr dual-phase-TPC in 700t AAr cryostat
 - $\circ\,$ Fill the detector by the end of 2026
 - 200 t-yr exposure
- UAr source and purification
 - Extraction of 250 kg/day, with 99.9% purity in Colorado
 - 350-m tall cryogenic distillation column in Sardinia
 - \circ O(1 tonne/day) with 10³ reduction of all chemical impurities
 - Isotopically separate ³⁹Ar from ⁴⁰Ar (at the rate of 10 kg/day in Seruci-I)
- GADMC: Global Argon Dark Matter Collaboration
 - Multi-national collaboration, >500 scientists from >100 institutions
 - ARGO, ~300t TPC, 3000 t-yr exposure for high mass WIMPs
 - Darkside-LowMass, 1 t-yr

DS-20k

液氦探测技术-ALETHIA实验

- 液氦TPC技术研发
- 30g-V1探测器成功达到液氦温度(~4.5 K)
- 探测器暗电流 < 10 pA@17kV/cm

³⁰g液氦探测器

其它探测技术: 室温闪烁体

年度调制效应探测
 DAMA/LIBRA
 ANAIS-112
 COSINE-100

Annual modulation from DAMA results

DAMA的验证实验

• ANAIS-112@LSC

- 9 NaI(Tl) crystals (112.5 kg)
- \circ No modulation and discard DAMA with ~3 σ sensitivity
- \circ 5σ sensitivity in late 2025

Astroparticle Physics European Consortium (APPEC) Recommendation: "The long-standing claim from DAMA/LIBRA [...] needs to be independently verified using the same target material."

COSINE-100@Y2L

- 106 kg NaI(Tl) crystals, ended in Mar. 2023
- ~7σ negative modulation (opposite phase)
 from the COSINE-100 data using
 DAMA/LIBRA's method
- \circ Upgrade and move to Yemilab

1-6 keV modulation amplitude

COSINE-100	0.0067 ± 0.0042	
DAMA/LIBRA	0.0105 ± 0.0011	
ANAIS-112	-0.0034 ± 0.0042	

其它探测技术: 方向探测实验

E. Baracchini, IDM 2022 J. Billard et al 2022 Rep. Prog. Phys. 85 056201 Jean-Marie Coquillat, TAUP 2023 Valeri Tioukov, TAUP 2023

• NEWS-G

- Spherical proportional counters
- Tested in LSM and operated in SNOLAB

CYGNUS

- 1000 m³ gaseous NITPC detector for WIMP searches through nuclear recoils
- Helium/Fluorine gas mixtures at 1 bar
- Multiple underground sites and staged expansion(Boulby, Kamioka, LNGS, Stawell)

NEWSdm @LNGS

- Directional dark matter search with nuclear emulsions
- Nano imaging tracker

DM and solar neutrinos event rate as a function of some angle ϕ on a twodimensional readout plane at 12 h time distance or 180 degree of longitude 39

low-P gas e 2-dim readout

NEWS-

- →更低本底、更低阈值、更大曝光量
- →中微子地板

Report of the 2023 Particle Physics Project Prioritization Panel (P5)

Illuminate the Hidden Universe

Determine the Nature of Dark Matter

A comprehensive program that includes a Generation 3 (G3) Dark Matter experiment will probe the enigmatic nature of dark matter... The recommended program also invests in multi-messenger observatories with dark matter sensitivity, including IceCube Gen-2, and small-scale dark matter experiments using innovative technologies.

https://www.usparticlephysics.org/2023-p5-report/

- 暗物质探测是重大前沿课题,探测到它并研究其性质,将带来 重大的物理学变革
- 暗物质直接探测实验竞争激烈,将进入中微子地板
 - ◦低温固体探测器实验: Low Energy Excess
 - CCD实验: 全方位降低本底
 - ○液态稀有气体探测实验:G3终极实验,进入中微子地板
 - DAMA年度调制效应结果有待检验
 - ○基于新探测技术的小型实验发展迅速

Dark matter 27% Visible

matter

5%

68% Dark energy

Credit: NASA's Goddard Space Flight Center