

JUNO as 2 MeV Water Cherenkov Detector

Li Dian¹ Ding Xuefeng¹ Lakshmi Murgod¹ Jiang Cailian¹,²

On behalf of **JUNO collaboration**

- 1. Institute of High energy physics
 - 2. Nanjing University

Introduction

Motivation: Demonstrating the low energy threshold of JUNO detector

in water-phase

• By observing **6.1 MeV, 4.4 MeV and 2.2 MeV** gamma event from ²⁴¹Am-⁹Be (Am-Be), ²⁴¹Am-¹³C (Am-C) calibration sources and neutron capture on hydrogen (n-H) to check low energy threshold.

Low energy threshold

JUNO water-phase:

- JUNO was filled about 23 k tons pure water in water-phase and 17 k 20-inches PMTs are available. (Large mass and high PMT coverage)
- Software trigger was designed to collect low energy events.

Am-Be, Am-C calibration sources

• JUNO performed a series of calibration measurements using **Am-Be and Am-C** calibration sources deployed at fixed positions inside the central detector:

- Am-Be source at a height of 16 m (4.4 MeV gamma)
- Am-Be source at a height of 10 m (4.4 MeV gamma)
- Am-C source at a height of 10 m (6.1 MeV gamma)
- Am-Be source at a height of -10 m (4.4 MeV gamma)

- Selecting 6 MeV and 4.4 MeV gamma events by using n_{20} (reconstruction energy) and z (reconstruction position z) 2D cut and Cylinder radius < 2 m:
- 6.1 MeV gamma event form Am-C and 4.4 MeV gamma event from Am-Be can be observed. Distinct peaks in z correspond to different source positions
- Event selection with $n_{20} > 45$ ensures suppression of low-energy background. These distributions help constrain the spatial window for identifying n-H events.

Neutron capture observation

- Neutron will be released by Am-Be and Am-C source:
 - Free neutron will be captured by hydrogen nucleus and release 2.2 MeV gamma particle.
 - n-H events and 4.4 MeV and 6.1 MeV gamma events from radiation sources can form a pair of prompt and delay signal. The reference lifetime of n-H events is 207 us^[1].
- Searching neutron capture events by looking for coincidence **delayed signal of 1100 us** after gamma events of 4.4 MeV and 6.1 MeV gamma events from AmBe, AmC Am-Be and Am-C sources:

• 2.2 MeV n-H events are observed on n₂₀ range 25 to 75 and height of corresponding radiation source.

Energy spectrums

The time difference between n-H candidates and prompt signals

Conclusions

- JUNO Detector can achieve 2.2 MeV low energy threshold as water Cherenkov detector
- 6.1 MeV gamma event from Am-C source and 4.4 MeV gamma event from Am-Be source can be observed.
- 2.2 MeV gamma from neutron capture on hydrogen can be observed by coincidence finding of Am-Be and Am-C events.

[1]. Anderson, M. R., et al. "Measurement of neutron-proton capture in the SNO+ water phase." Physical Review C 102.1 (2020): 014002.