

First Measurement of High-Energy Neutron-Induced y-Rays with a Low Background GAGG Neutron Detector

Yingjie Chu Gran Sasso Science Institute, 67100, L'Aquila, Italy

Abstract

A precise measurement of neutrons is crucial for underground experiments searching for rare events. We assembled a prototype detector using a 100 cm³ GAGG crystal coupled to a photomultiplier tube at LNGS to detect high-energy neutron-induced y-rays. The detector features excellent pulse shape discrimination (PSD), enabling separation of signal-like events and backgrounds which are studied in detail using the delayed coincidence. The neutron response measured underground shows the first measurement of high-energy γ-rays with such a crystal. We performed Monte Carlo simulations to verify and optimize the setup.

yingjie.chu@gssi.it

The setup at LNGS

Neutron detector for low background applications

GAGG crystal as the neutron detector

- Highest neutron capture cross-section 155 Gd + n → 156 Gd + γ (8.53 MeV), σ_n = 61 kb $^{157}Gd + n \rightarrow ^{158}Gd + \gamma (7.95 \text{ MeV}), \sigma_n = 254 \text{ kb}$
- Gd₃ Al₂ Ga₃ O₁₂ crystal
- Clean signature: γ cascades above the highest natural background γ-line

1.78 ms 211Pb

7526 keV

Going underground to suppress muons

The prototype for measuring background

- **Shielding**: rock with 3600 mwe. and borated polyethylene
- Large crystal: $\phi = 5$ cm, h = 5 cm
- High light yield (45000 ph/MeV) and fast time response (90 ns) [1]

Excellent α backgrounds rejection power

Discrimination parameter PSD based on different decay times of β/γ and α events

Background data showing well separated β/γ and α bands

- \rightarrow in the β/γ band, $\beta+\gamma$ events from ²⁰⁸Tl appeared above 2614 keV
- $\rightarrow \alpha$ band: contamination unknown due to quenching

Results from measurements

Characterizing intrinsic alpha background with delayed coincidence

The delayed coincidence identifies the decays with short half-lives in natural decay chains via the time difference of two subsequent α events, Δt ,

6946 keV

 $3.96 \text{ s} \xrightarrow{215} \text{Po}$

5979 keV

Calibration parameters (Integral \rightarrow E), energy resolution, as well as contamination as input

Detector response to neutrons

- Standard polyethylene (PE) slows down neutrons from the AmBe source, while the Cu plate reduces source-emitted γ-rays at ~4.4 MeV
- Count rate in the background spectrum within [5 MeV, 10 MeV]: (0.28 ± 0.06) cts/d, mostly from neutrons produced in the detector
- The environmental neutron flux at LNGS was measured with the unshielded detector, ~1×10⁻⁶ cts/cm²/s, comparable with others [3]

Comparison with Monte Carlo simulations

MCNP simulation verification to estimate the neutron detection efficiency

MCNP simulated AmBe neutron • As expected, more thermal neutrons spectra in two configurations

are stopped in the GAGG with the PE

Measured $rate^{PE}$

Simulated $\frac{flux^{ ext{PE}}}{}$ _

The simulation underestimates the data by about a factor of two

- Test the simulation with the low background LiI neutron detector [4]
 - Nuclear reaction in the detector $^{6}\text{Li} + \text{n} \rightarrow ^{4}\text{He} + ^{3}\text{H} + Q (Q = 4.78 \text{ MeV})$
 - Measurements 2 cm thick Pb + PE (0-5 cm thick)
 - no Pb + PE (0-5 cm thick) Measured neutron intensity increases faster with PE thickness than predicted by simulation

Highlight (Our paper on arXiv:2504.16889)

The first measurement of high-energy γ -rays using the GAGG neutron detector at the LNGS is achieved in this work, and detailed background characterizations give us a good understanding of the detector's radiopurity. The detector provides a new comparative technique for underground experiments to measure neutron flux.

With the dedicated Monte Carlo simulations, a Bonner sphere with several such detectors will be set up in the near future. Furthermore, we aim to overcome the limitation of applying the GAGG neutron detectors for above-ground use, which would be of great interest to a wider community.

Publication: