

Seasonal Variation of Muon Flux in Daya Bay Using the Full Data Set

on Behalf of the Daya Bay Collaboration

Introduction

Cosmic Ray Shower Illustration

- Primary cosmic rays interact with atmospheric molecules, initiating hadronic cascades in which mesons are produced.
- These mesons either undergo further interactions or decay into high-energy muons capable of penetrating rock and reaching deep underground detectors.
- An increase in temperature reduces atmospheric density, enhancing the likelihood of meson decays into muons.
- The positive correlation between atmospheric temperature and the intensity of muons reaching the underground detector is [Astroparticle Physics 33 (2010) 140–145]:

$$\frac{\Delta R_{\mu}}{\langle R_{\mu} \rangle} = \alpha \frac{\Delta T_{eff}}{\langle T_{eff} \rangle}$$

ullet Correlation coefficient α is expected to be dependent on overburden.

Daya Bay Reactor Neutrino Experiment

JCAP01(2018)001

	Overburden		Muon flux
Hall	m	m.w.e.	Hz/m ²
EH1	93	250	1.27
EH2	100	265	0.95
ЕНЗ	324	860	0.056

- Daya Bay Experiment features eight identical antineutrino detectors in three underground experimental halls at different depths.
- It provides an ideal setup to study coefficient α using identical detectors at different overburdens.

Nuclear Instruments and Methods in Physics Research A 811 (2016) 133–161

Muon Selection

- Muon candidates are defined as events with greater than 60 MeV energy deposition in ADs (antineutrino detectors).
- Events with energies greater than 10 MeV have Michael electron mixed in, and 60 MeV cut can remove them.
- Raising the energy cut of EH3-AD1 to 100 MeV due to the leak of liquid scintillator in summer 2012.

Muon Rate History

- Over nine years of operation, the Daya Bay Reactor Neutrino Experiment has accumulated muon data spanning 3,158 days.
- Muon rates in all ADs exhibit seasonal variations over time.
 - Red sinusoidal fits are performed for comparison purpose only.
- Minor variations in muon rates between the two ADs in EH2 are attributed to the structural profile of the mountain above the hall.
- Compared to the other ADs in EH3, the relatively lower average muon rate in EH3-AD1 is a result of its higher energy threshold requirement of 100 MeV, as opposed to the 60 MeV threshold for the other ADs.

Effective Temperature

- Atmosphere is treated as an isothermal body with an effective temperature to account for different muon creation heights.
- Effective temperature is computed as a weighted average of temperature T at atmospheric depth X [Astroparticle Physics 33 (2010) 140–145]

$$T_{eff} = \frac{\int_0^\infty dX \, T(X) W(X)}{\int_0^\infty dX \, W(X)} \approx \frac{\sum_i \Delta X_i T(X_i) W(X_i)}{\sum_i \Delta X_i W(X_i)}$$
 the weight calculation is in the backup

- The atmospheric temperature data was obtained from ERA5 database provided by ECMWF.
 - Hourly temperature measurements at 37 pressure levels above DayaBay.
 - A cubic spline and interpolated data to accurately determine T_{eff}.

Uncertainty of the Effective Temperature

Two sources: temperature data set uncertainty and weight parameters uncertainty.

- 1. Compute the difference in Teff using another temperature dataset: IGRA from US national Climatic Data Center.
 - Spread of the difference considered to be an estimate of the uncertainty.
- 2. Propagate errors of parameters in the weight by varying their values (bootstrap method).
 - Repeatedly calculate Teff by sampling parameters from normal distribution (mean value and error are derived from the measurements of each parameter).

Uncertainty of the Effective Temperature

Two sources: temperature data set uncertainty and weight parameters uncertainty.

- 1. Compute the difference in Teff using another temperature dataset: IGRA from US national Climatic Data Center.
 - Spread of the difference considered to be an estimate of the uncertainty.
- 2. Propagate errors of parameters in the weight by varying their values (bootstrap method).
 - Repeatedly calculate Teff by sampling parameters from normal distribution (mean value and error are derived from the measurements of each parameter).

Total uncertainty 0.45 K for EH1, 0.44 K for EH2, and 0.41 K for EH3.

Correlation Coefficients

- The relative muon rate variation versus the relative effective temperature variation was constructed by combining data from the ADs in the same experimental hall.
- A linear regression accounting for errors on both axes is performed to each scatter plot.

Chi-square definition:
$$\chi^2 = \sum_i \frac{[y_i - \alpha \cdot x_i)]^2}{e_y^2 + \alpha^2 \cdot e_x^2}$$

Difference between Warmer and Cooler days

- We have observed a slight deviation from the expected linear relationship.
- The correlation coefficient of warmer days(May-Oct.) is greater than that of cooler days(Nov.-Apr.).
- Dashed lines are included to guide the eye and facilitate comparison.
- Further investigation is being performed:
 - Preliminary simulations using CORSIKA exhibit a similar phenomenon.

Dependence on the Time of Year

- The correlation coefficient of the four-month sliding window was calculated.
- The strength of the correlation varies across different four-month sliding windows.
 - Each 4-month sliding window is characterized by a unique average temperature.

Summary

- A study on seasonal variations in muon rates was conducted using the full dataset from the Daya Bay experiment.
- The high-statistics data reveals deviations from an ideal linear relationship between temperature and muon rate:
 - Alpha dependence on different subset of data of different time of year.
- Further study is underway.
- Stay tuned!

Thank You for Your Attention

Backup

Backup: Seasonal Variation of Muon Flux in DayaBay

1000

- Correlation coefficients were extracted with 707 Days (2011.12-2013.11)
- This work:
 - Dataset: 3,158 Days (2011.12- 2020.12)
 - Muon Selection Updates
 - Improved calculation of effective tempreture
 - Minimun DAQ time 6 hours
 - Temperature Database changed from ERA-Interim to ERA5

100

 $\langle \mathsf{E}_{\mathsf{THR}} \mathsf{cos} \theta \rangle \, [\mathsf{GeV}]$

Backup: Effective Temperature Weight

 Effective temperature is computed as a weighted average of temperature T at atmospheric depth X, where the weight is

$$W^{\pi(K)} \simeq \frac{\left(1 - \frac{X}{\lambda_{\pi(K)}}\right)^2 e^{-\frac{X}{\Lambda_{\pi(K)}}} A_{\pi(K)}}{\gamma + (\gamma + 1) B_{\pi(K)} K(X) \left(\frac{\langle E_{\text{thr}} \cos \theta \rangle}{\epsilon_{\pi(K)}}\right)^2},$$

$$K(X) \equiv \frac{X \left(1 - \frac{X}{\lambda_{\pi(K)}}\right)^2}{\left(1 - e^{-\frac{X}{\lambda_{\pi(K)}}}\right) \lambda_{\pi(K)}},$$

$$\frac{1}{\lambda_{\pi(K)}} = \frac{1}{\Lambda_N} - \frac{1}{\Lambda_{\pi(K)}}.$$

The parameter values used in the weight calculation:

Parameter	Value
A_{π}	1
A_K	$0.38 \cdot r_{K/\pi}$
$r_{K/\pi}$	0.15 ± 0.06
B_{π}	1.460 ± 0.007
B_K	1.740 ± 0.028
Λ_N	$120 \mathrm{\ g/cm^2}$
Λ_{π}	$180 \mathrm{\ g/cm^2}$
Λ_K	$160 \mathrm{g/cm^2}$
$\langle E_{\rm thr} \cos \theta \rangle_{\rm EH1}$	(37 ± 3) GeV
$\langle E_{\rm thr} \cos \theta \rangle_{\rm EH2}$	$(41\pm3) \text{ GeV}$
$\langle E_{\rm thr} \cos \theta \rangle_{\rm EH3}$	$(143\pm10) \text{ GeV}$
γ	1.7 ± 0.1
ϵ_{π}	$(114\pm 3) \text{ GeV}$
ϵ_K	$(851\pm14) \text{ GeV}$

Backup: Systematic Uncertainties

Systematic uncertainties affecting the correlation coefficients can be divided into muon-related and time-related

- 1. Muon-related:
 - 1 AD-dependent correction of the energy drift (below 1%) over time:
 - We conservatively adjusted the muon selection energy thresholds by $\pm 1\%$. The maximum deviation of the correlation coefficient from the nominal value as the systematic uncertainty
 - 2 Tighter energy cut for EH3-AD1:
 - We raise the energy cut from 60 MeV to 100 MeV in the EH1 and EH2 ADs and we look at variation in the α values
- 2. Time-related:
 - (3) Potential bias from uneven data collection across all seasons
 - Quantified by evening DAQ across months

Systematic	Variation Considered	Impact on the Coefficients Scatter Plot Method	Applicability
Energy Drift	1% change in muon energy cut	1%	Applied to all ADs
Energy Cut	100 MeV energy cut for all ADs	3%	Applied only to EH3-AD1
Time Period	Even amount of days per month	5%	Applied to all ADs