

CALET Payload

Kounotori (HTV) 5

- Launched on Aug. 19th, 2015 by the Japanese H2-B rocket.
- Emplaced on JEM-EF port #9 on Aug. 25th, 2015

- Mass: 612.8 kg
- JEM Standard Payload Size:1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:
 Medium 600 kbps (6.5GB/day) / Low 50 kbps

CALET Detector: Calorimeter

	CHD (Charge Detector)	IMC (Imaging Calorimeter)	TASC (Total Absorption Calorimeter)
Measure	Charge (Z=1-40)	Tracking , Particle ID	Energy, e/p Separation
Geometry (Material)	Plastic Scintillator 14 paddles x 2 layers (X,Y): 28 paddles Paddle Size: 32 x 10 x 450 mm ³	448 Scifi x 16 layers (X,Y) : 7168 Scifi 7 W layers (3X ₀): 0.2X ₀ x 5 + 1X ₀ x2 Scifi size : 1 x 1 x 448 mm ³	16 PWO logs x 12 layers (x,y): 192 logs log size: 19 x 20 x 326 mm ³ Total Thickness : 27 X ₀ , ~1.2 λ ₁
Readout	PMT+CSA	64-anode PMT + ASIC (VA32-HDR)	APD/PD+CSA PMT+CSA (for Trigger)@top layer

CALET Calorimeter and Capability

CHD – Charge Detector

- 2 layers x 14 plastic scintillating paddles
- single element charge ID from p to Fe and above (Z = 40)
- charge resolution ~0.1-0.3 e

IMC – Imaging Calorimeter

- Scifi + Tungsten absorbers: $3 X_0$ at normal incidence
- 8 x 2 x 448 plastic scintillating fibers (1mm) readout individually
- Tracking (~0.1° angular resolution) + Shower imaging

TASC – Total Absorption Calorimeter 27 X_0 1.2 λ_1

- 6 x 2 x 16 lead tungstate (PbWO₄) logs
- Energy resolution: ~2 % (>10GeV) for e , γ ~30-35% for p, nuclei
- e/p separation: ~10⁻⁵

Energy Deposit Resolution in the Calorimeter

Asaoka et al. 2017, Astropart. Phys. 91, 1-10

Energy deposit resolution in the TASC is better than 2% above ~8 GeV

Reconstructed energy resolution is better than 2% for electrons above ~20 GeV

CALET Scientific Goal

Detector performance

Geometrical Factor:

1040 cm² sr for electrons, light nuclei 1000 cm² sr for gamma-rays 4000 cm²sr for ultra-heavy nuclei

• ∆E/E:

 $^{\sim}2$ % (>10GeV) for e , γ $^{\sim}30-35\%$ for protons, nuclei

• e/p separation: ~10⁵

• Charge resolution: 0.15-3 e (p-Fe)

Angular resolution:

 0.2° for gamma-rays > ~50 GeV

Scientific objectives

♦ Electron observation in 1GeV-20TeV

Design optimized for electron detection: high energy resolution and large e/p separation power + electromagnetic shower containment

Search for Dark Matter and Nearby Sources

- ◆ Observation of cosmic-rays in 10 GeV-1 PeV CR acceleration and propagation mechanism(s)
- **♦** Detection of transient phenomena in space:
- Gamma-ray burst
- GW e.m. counterparts
- Solar modulation
- Space weather

Scientific Objectives	Observation Targets	Energy Range
CR Origin and Acceleration	Electron spectrum Individual spectra of elements from proton to Fe Ultra Heavy Ions (26 <z≤40) (diffuse="" +="" gamma-rays="" point="" sources)<="" td=""><td>1GeV - 20 TeV 10 GeV - 1000 TeV > 600 MeV/n 1 GeV - 1 TeV</td></z≤40)>	1GeV - 20 TeV 10 GeV - 1000 TeV > 600 MeV/n 1 GeV - 1 TeV
Galactic CR Propagation	B/C and sub-Fe/Fe ratios	Up to some TeV/n
Nearby CR Sources	Electron spectrum	100 GeV - 20 TeV
Dark Matter	Signatures in electron/gamma-ray spectra	100 GeV - 20 TeV
Solar Physics	Electron flux (1GeV-10GeV)	< 10 GeV
Gamma-ray Transients	Gamma-rays and X-rays	7 keV - 20 MeV

CALET Observation on the ISS

Accumulated observation time (live, dead)

High-energy trigger (> 10 GeV) statistics:

- Operational time: **3368 days** as of Dec. 31, 2024
- Live time fraction: >85%
- Exposure of HE trigger: ~300 m² sr day

Energy deposit (in TASC) spectrum: 1 GeV-1 PeV

Cosmic-ray all-electron spectrum

PRL 131, 191001 (2023) ICRC2025 update

- More than 9 years observation has reduced statistics and systematic errors.
- Statistics has increases by 27% from PRL 2023.
- Systematic discrepancy between CALET/AMS-02 and DAMPE/Fermi-LAT remains.

CALET observes a flux suppression above 1 TeV with a significance of **6.7** σ.

Towards an Interpretation of the CALET All-electron Spectrum

- Fit in 30-4.8TeV
 - Single power law is suppressed above 1 TeV with a significance $^{\sim}6.7\sigma$.
 - Broken power law
 - γ = -3.14±0.01 -> 3.92 at 752±140GeV (χ^2/NDF =1.7/28)
 - Exponentially cut-off power law
 - γ = -3.10±0.01 at 2854± 304GeV (χ^2 /NDF=6.1/28)
- Possible spectral fit in whole energy region
 - Positron contribution is fitted using AMS flux with secondaries + pulsers.
 - CALET electron+positron flux is fitted with secondaries + pulsers + SNRs.

Dipole Anisotropy Measurement

Data sample: $3x10^5$ electrons above 50GeV (Oct. 2015 – Dec. 2024)

event map in E>1 TeV

event map in E>5 TeV

Dipole amplitude is within 2σ band. But the amplitude above ~2TeV is close to the upper boundary.

In E>5 TeV, event cluster close to the direction toward the Vela SNR.

Charge Identification with CHD and MC

Single element identification for p, He and light nuclei is achieved by CHD+IMC charge analysis.

Deviation from Z² response is corrected both in CHD and IMC using a core + halo ionization model (Voltz)

Entries

Proton Energy Spectrum

PRL 129, 101102 (2022) ICRC 2025 update

LE: same as PRL2022

HE: 2850 days of live time (Oct. 2015 – Dec. 2024)

$$\Phi(E) = \frac{N(E)}{S\Omega T\Delta E\varepsilon(E)}$$

 $\Phi(E)$: proton flux

N(E): number of events in ΔE bin (after

background subtraction)

 $S\Omega$: geometrical acceptance (510cm²sr)

T: livetime

 ΔE : energy bin width

 $\varepsilon(E)$: detection efficiency

Energy dependence of spectral index (sliding energy window within 5 bins)

Spectral Fit with Double Broken Power Law (DBPL)

Kinetic energy [GeV]

 10^{4}

 10^{3}

Low energy hardening softening $\chi^2 = 6.8/20$

γ	-2.858+0.005-0.005	
S	1.6±0.2	
Δγ	(3.7±0.1)x10 ⁻¹	
E ₀	(6.72+0.45-0.40)x10 ²	
$\Delta \gamma_1$	(-4.9+1.2-1.3)x10 ⁻¹	
E ₁	(9.6+2.4-1.7)x10 ³	
S ₁	2.7+3.5-0.5	

The s_1 becomes smoother, but s_1 is larger than s.

 10^{2}

Helium Energy Spectrum

PRL 130, 171002 (2023) ICRC2025 update

Data: Oct. 2015 – Sep. 2020

We observe the spectral hardening starting at

 $E_0 = 1.276^{+0.111}_{-0.094}(stat)^{+0.250}_{-0.198}(sys)$ TeV This is consistent with DAMPE result (PRL 2021).

We also observe spectral softening starting at

$$E_1 = 34.6^{+7.2}_{-5.5}(stat)^{+1.6}_{-6.1}(sys)$$
TeV

Proton/He ratio

- Spectral hardening in rigidity are consistent between proton and helium.
- p/He ratio from tens GV to 10 TV is well described by SPL ($\Phi(R) = A \times R^{\gamma}$, $\gamma = -0.097 \pm 0.005$).
- DPL is favored with a significance of 4.8σ compared to SPL from 60 GV to 100 TV.

DPL:
$$\Phi(R) = \begin{cases} C \times \left(\frac{R}{1GV}\right)^{\gamma} & (R > R_0) \\ C \times \left(\frac{R}{1GV}\right)^{\gamma} \times \left(\frac{R}{R_0}\right)^{\Delta \gamma} & (R > R_0) \end{cases}$$

γ	-0.097±0.006
R_0	6.60±1.87 TV
Δγ	-0.23±0.08

Observations of Cosmic-ray Nuclei

Preliminary spectra of Carbon – Iron

Kinetic Energy per Particle [GeV]

Dedicated analysis of cosmic-ray nuclear fluxes and flux ratios into the TeV region ongoing.

Energy Spectra of Cosmic-ray BCO

C&O: PRL 125, 251102 (2020)

B: PRL 129, 251103 (2022)

ICRC 2025 update

- CALET B,C are consistent with PAMELA and most of the previous experiments (PAMELA did not publish oxygen).
- CALET B,C,O absolute normalization are lower than AMS-02.
- The C, O spectra show a clear hardening around 200 GeV/n and hint of a softening around 10 TeV/n.

BCO flux ratio

- Cosmic ray Boron are entirely produced by the collision with the interstellar matter, though carbon are thought to be mainly produced and accelerated in astrophysical sources. Therefore, B/C ratio directly measures the average amount of interstellar material traversed by cosmic rays.
- B/C, B/O, and C/O ratio are consistent to AMS-02.

Iron – Analysis (Charge Selection)

Charge measurement with the two CHD layers

Iron and Sub-Iron Energy Spectrum

PRL 135, 021002 (2025)

Data: Nov. 2015 – Oct 2023

[10 GeV/n, 100 GeV/n]

- Iron spectrum was updated with 2 times larger statistics than PRL 2020.
- Possible hardening of iron spectrum above a few hundred GeV/n.
- New measurement on Ti and Cr spectrum.

Sub-Iron to Iron Ratios

Kinetic Energy per Nucleon [GeV/n]

- Ti/Fe and Cr/Fe ratios are well fitted with SPL.
- Z dependence of the Index of flux ratio is found to be consistent with the CALET + HEAO3-C2 data.

Nickel Energy Spectrum

PRL 128, 131103 (2022) ICRC 2023 Update

Flux x E^{2.6} vs kinetic energy per nucleon [8.8 GeV/n, 240 GeV/n]

Data: Nov. 2016 - Dec 2022

Ni and Fe fluxes have the same energy dependence.

Ultra Heavy Nuclei (14<=Z<=44)

Data: 7.5years of CALET UH-trigger from Oct. 2015 to Nov. 2023.

A special UH CR trigger uses the CHD and the first 4 layers of the IMC to achieve an expanded x 4 geometric factor, GF \sim 4400 cm² sr.

Ultra Heavy Nuclei (14<=Z<=44)

APJ 988:148 (2025)

Relative Abundances of odd-even pairs for $27 \le Z \le 44$

- We measure the relative abundances to Fe for 14<=Z<=44.
- The CALET UH element ratios are consistent with Super-TIGER, ACE_CRIS, and HEAO-3 abundances.
- For Z>26, odd peaks are higher than that of other experiments. However, relative abundance of odd-even elements pairs (lower figure) shows excellent agreement.

All-particle Spectrum from 31.6 GeV to 1 PeV ICRC2025

Data: Oct. 2015 - Dec. 2024

- Simple selection criteria are applied.
- MC (EPICS with DPMJET-III) are weighted to reproduce the fitted results of the observed CALET spectra.
- The spectrum is reconstructed using the unfolding response matrix from MC based on a weighted mixture of nuclei $(Z=1^28).$
- CALET spectrum is close to the indirect measurements from ground experiments.

CALET GeV-energy Gamma Rays

found to be consistent with those by Fermi-LAT.

Energy resolution: ~2% (> 10 GeV)
 Average galactic spectra

On-plane: $|\ell| < 80^{\circ} \& |b| < 8^{\circ}$

26

Off-plane: $|b| > 10^{\circ}$

CALET Gamma-ray Burst Monitor

CGBM detector

GRB search

CGBM has performed GRB observations on ISS for more than 9 years. In Oct. 5th, 2015 – Apr. 30th, 2025, we have detected 365 GRBs.

Hard X-ray Monitor Soft Gamma-ray Monitor 7 – 1000 keV 40 keV – 20 MeV

Searched for electromagnetic counterparts of GW events in O4.

	Detection (SNR>=7)	No detection	HV off	Outside of FOB
O4a	0	44	37	4
O4b	1*	51	47	7
O4c	0	8	7	2
O4 total	1	103	91	13

As of the end of April 2025, no GW candidates.

Charge-sign Dependent Solar Modulation Charge-sign Dependent Solar Modulation

PRL 130, 211001 (2023)
ICRC 2025 Update

Time Profile

200
150
100
2016
2018
2020
2022
2024

- CALET have been recorded the count rates of proton/electron
 >1GeV in the past 10 years including the solar minimum and the solar maximum.
- We have observed a clear charge-sign dependence of the solar modulation of galactic cosmic-rays and have succeeded in reproducing variations with a numerical drift model.

Summary

- CALET has been running stably for 10 years after the launch in Aug. 2015.
- HE trigger operation for >3368days with >86% live time.
- Total number of >GeV triggers ~5billion.
- We have achieved the following observations:
 - Cosmic-ray spectra: electron/proton/He/B/C/O/Fe/Ni/more
 - Solar modulation/diffuse and point source gamma-ray/GRB/GW follow up.
- New results:
 - Ti/Cr/Fe (PRL 135, 021002 (2025))
 - UH (14<=Z<=44) (APJ 988:148 (2025)
- Extended operations has been approved by JAXA/NASA/ASI through 2030.

We greatly appreciate JAXA staff for great support of the CALET operations at the TKSC of JAXA!

Backup

Overview of CALET Payload

CAL

- Charge Detector (CHD)
- Imaging Calorimeter (IMC)
- Total Absorption Calorimeter (TASC)

CGBM

Hard X-ray Monitor (HXM) x 2

LaBr₃: 7keV~1MeV

Soft γ-ray Monitor (SGM)

BGO: 100keV~20MeV

Data Processing & Power Supply

- Mission Data Controller (MDC)
 CPU, telemetry, power, trigger etc.
- HV-BOX (Italian contribution)
 HV supply (PMT:68ch, APD:22ch)

Support Sensors

- Advanced Stellar Compass (ASC)
 Directional measurement
- GPS Receiver (GPSR)
 Time stamp of triggered event (<1ms)

Space Weather Transients

- Objectives of CALET include continuous monitoring of space-weather phenomena in the LEO radiation environment, including relativistic electron precipitation (REP) from the outer Van Allen Belt
- REP drivers were investigated in magnetically conjugate observations by CALET and Van Allen Probes, showing the role of wave scattering and the contribution of EMICwave driven precipitation to radiation-belt losses (Bruno et al., 2021[†]; Blum et al., 2024[‡])

CALET and Radiation Belt Science Probes (RBSP)

- An automated algorithm based on machine-learning techniques was implemented to identify and classify the REP events collected during >9 years of the mission (Vidal-Luengo et al, 2024a*)
- The large statistical sample allowed to investigate the contribution of REP to the radiation belt dropouts, and the correlations with solar-wind/geomagnetic drivers (Freund et al., 2024*)
- The occurrence of REP events was found to exhibit a semi-annual variation (peaking at equinoxes), in agreement with the temporal periodicity of outer-belt electron intensities (Vidal-Luengo et al, 2024b^)