

MUTE: Calculations for Cosmic-Ray Muons in Deep Underground Laboratories

William Woodley
University of Alberta
TAUP 2025
25 August 2025

Introduction

- Underground muons are crucial for data analyses in neutrino telescopes and in the design of dark matter detectors.
- Previous methods for CR muon calculations have many disadvantages:
 - Analytical Formulas and Parametric Fits: Missing comprehensive treatment of the uncertainties, contain systematic biases.
 - **Muon Propagator Codes:** Rely on outdated models or slow and inaccesible tools.
- MUTE is an open-source Python program first released in 2021 that calculates atmospheric muon fluxes.

MUTE (MUon inTensity codE)

https://github.com/wjwoodley/mute

MUTE Method Overview

W. Woodley

MUTE Method

$$\Phi^{u}(E_{j}^{u}, X_{k}, \theta_{k}) = \sum_{i} \Phi^{s}(E_{i}^{s}, \theta_{k}) P(E_{i}^{s}, E_{j}^{u}, X_{k}) \left(\frac{\Delta E_{i}^{s}}{\Delta E_{j}^{u}}\right)$$

Defining Laboratory Parameters – Overburden

Intensities are calculated by integrating underground muon flux over all energies:

$$I^{u}(X,\theta) = \int_{E_{th}}^{\infty} \Phi^{u}(E^{u}, X, \theta) dE^{u}$$

- Laboratory overburden shapes can be specified in MUTE by setting one of the following parameters:
 - Vertical Depth (for labs under flat overburdens)
 - Mountain Profile in $X(\theta, \phi)$ (for labs under **mountains**)

Defining Laboratory Parameters – Rock Composition

- Rock composition plays a significant role in modelling the energy loss of muons travelling through rock. MUTE and PROPOSAL require details of the rock for accurate modelling (recommendations in PRD 110 (2024) 6, 063006):
 - 1. Rock Density
 - 2. <Z> and <A> of Rock from Minor or Major Components
 - 3. Sternheimer Parameters for Ionisation Losses

Laboratory Locations

Total Underground Muon Flux

• The total muon flux is the main observable of interest for muon-induced backgrounds and it has been calculated for various deep underground labs using daemonflux.

Laboratory	Experiment	$\Phi_{\text{tot}}^{u} \; (\text{cm}^{-2} \text{s}^{-1})$	$\Phi_{\rm tot}^u \left({\rm cm}^{-2} {\rm s}^{-1}\right)$	$\overline{h}_{\mathrm{SR}}$ (km.w.e.)
		Measured	Predicted by MUTE	Inferred from MUTE
WIPP	- (2005)	$(4.77 \pm 0.09) \times 10^{-7} [30]$	$(5.17 \pm 0.11) \times 10^{-7}$ a	1.54 ± 0.01
Y2L	COSINE-100 (2020)	$(3.795 \pm 0.110) \times 10^{-7} [68]$ $(4.459 \pm 0.132) \times 10^{-7} b$	$(4.73 \pm 0.11) \times 10^{-7}$	1.58 ± 0.01
Soudan	- (2014)	$(1.65 \pm 0.10) \times 10^{-7} [69]$	$(1.66 \pm 0.04) \times 10^{-7}$	2.07 ± 0.01
Kamioka	Super-Kamiokande (2018)	$(1.54 \pm 0.31) \times 10^{-7} [33]^{\text{ c}}$	$(1.61 \pm 0.04) \times 10^{-7}$	2.09 ± 0.01
	KamLAND (2010)	$(1.49 \pm 0.11) \times 10^{-7} [27]$	$(1.53 \pm 0.04) \times 10^{-7}$	2.11 ± 0.01
Boulby	ZePLiN 1 (2003)	$(4.09 \pm 0.15) \times 10^{-8} [34]$	$(4.19 \pm 0.13) \times 10^{-8}$	2.83 ± 0.02
SUPL	SABRE (2021)	$(3.65 \pm 0.41) \times 10^{-8} [70]$	$(3.58 \pm 0.11) \times 10^{-8}$ d	2.93 ± 0.02
LNGS	MACRO (2003)	$(3.22 \pm 0.08) \times 10^{-8} [42]$		
	Borexino (B2019)	$(3.432 \pm 0.003) \times 10^{-8} [43]$	$(3.25 \pm 0.11) \times 10^{-8}$	2.99 ± 0.02
	LVD (L2019)	$(3.35 \pm 0.03) \times 10^{-8} [44]$		
LSM	EDELWEISS (2013)	$(6.25 \pm 0.2^{+0.6}_{-1.0}) \times 10^{-9}$ [71]	$(6.87 \pm 0.28) \times 10^{-8}$ a	4.00 ± 0.03
SURF	Homestake (1983)	$(4.14 \pm 0.05) \times 10^{-9} $ [72]		
	MAJORANA (M2017)	$(5.31 \pm 0.17) \times 10^{-9} [38]$	$(4.01 \pm 0.17) \times 10^{-9}$	4.38 ± 0.03
	LUX (L2017)	$(4.60 \pm 0.33) \times 10^{-9} [73]$		
SNOLAB	SNO (2009)	$(3.31 \pm 0.10) \times 10^{-10} [25]$	$(4.02 \pm 0.24) \times 10^{-10}$	6.13 ± 0.05
CJPL-I	JNE (2020)	$(3.53 \pm 0.29) \times 10^{-10} [29]$	$(3.98 \pm 0.24) \times 10^{-10}$	6.13 ± 0.05

Total Underground Muon Flux

- The total muon flux is the main observable of interest for muon-induced backgrounds and it has been calculated for various deep underground labs using daemonflux.
- MUTE with daemonflux provides a satisfactory description of the data in all cases, with small uncertainties.

Modelling the Muon Flux at CJPL

С	0	Mg	Al
9.59	46.42	11.50	0.15
Si	K	Ca	Fe

$$\langle Z \rangle$$
 = 12.15; $\langle A \rangle$ = 24.30; ρ = 2.8 gcm⁻³

CJPL-I mountain map provided by Shaomin Chen at Tsinghua University.

$$\Phi_{\mu,\text{tot}}^{u,\text{CJPL}} = (3.98 \pm 0.24) \times 10^{-10} \text{cm}^{-2} \text{s}^{-1}$$

Modelling the Muon Flux at CJPL

1. Install MUTE in the terminal.

```
pip install mute
```

2. Import MUTE in Python.

```
import mute.constants as mtc
import mute.underground as mtu
```

3. Define parameters for CJPL through global constants.

```
mtc.set_overburden("mountain") # Do calculations for a lab under a mountain
mtc.set_reference_density(2.8) # Set rock density to 2.8 g/cm^3
mtc.load_mountain("CJPL") # Load the profile of the mountain above CJPL
```

4. Calculate muon fluxes.

```
mtu.calc_u_tot_flux(model = "daemonflux") # Calculate total underground flux
mtu.calc_u_e_spect(model = "daemonflux") # Calculate underground energy spectrum
mtu.calc_u_ang_dist(kind = "azimuthal", model = "daemonflux") # Calculate angular distribution
```

MUTE v3

- MUTE v3.0.0 was released on 25 May 2025.
- This release included a number of new features and improvements:
 - Integration of daemonflux for surface muon fluxes into the computation chain.
 - Functions to compute energy spectra.
 - Functions to compute angular distributions.
 - Built-in **mountain maps** provided for DULs:
 - Y2L (COSINE-100)

- LNGS (LVD)
- Kamioka (Super-Kamiokande)
- LSM (Fréjus)

Kamioka (KamLAND)

- CJPL-I (JNE)
- Detailed propagation media for individual labs.
- More precise control over (latitude, longitude).
- Better statistics (10⁶) in default transfer tensors.
- Results published in <u>PRD 110 (2024) 6, 063006</u>.

Seasonal Variations

- The muon flux varies over the seasons due to changes to the temperature and density of the atmosphere.
- Energy-dependence of the decay and interaction processes means the sign of the amplitude of these variations inverts from surface to underground.
- MUTE calculates these amplitudes to high precision for labs in the northern and southern hemispheres.
- It can provide predictions to new experiments, like SABRE.

Other Applications

Upcoming Releases

v3.0 v3.1 v3.2 v4.0

- Future releases of MUTE are planned to accommodate these applications.
- New features planned:
 - Integration of latest primary crflux models (GSF) and hadronic interaction models (SIBYLL-2.3e, EPOS-LHC-R, QGSJET-III.01) though MCEq.
 - Propagation to shallow depths (< 0.5 km.w.e.).
 - Arbitrary medium definition for any rock composition.
 - Built-in mountain map generator.
 - More efficient calculations.
- Stay tuned!
- Please feel free to reach out if you are interested in applications of MUTE.

wwoodley@ualberta.ca

Summary

- MUTE uses state-of-the-art models and codes to provide precise estimates of muon spectra underground.
- It can compute forward predictions for muon fluxes, intensities, energy spectra, and angular distributions for underground laboratories located at depths between 0.5 km.w.e. and 14.0 km.w.e.
- Results have been compared against data from various experiments and we find very good agreement in almost all cases. Full details are published in PRD 110 (2024) 6, 063006.
- MUTE v3 is available to be installed via pip with documentation on GitHub: https://github.com/wjwoodley/mute.
- Future releases of MUTE are being planned for various interdisciplinary applications, including updates to include the most recent CR and hadronic models.

Thank You