





The 19th international conference on topics in astroparticle and Underground Physics, @ Xichang, China Aug.24-Aug.30 2025

Speaker: <u>Pengxiong Ma, 马鹏雄</u>
Purple mountain observatory, CAS, Nanjing, China
On bebalf of the DAMPE Collaboration.



## DAMPE collaboration



#### China

#### 1. Purple mountain observatory, CAS, Nanjing.

- 2. University of Science and Technology of China, Hefei.
- 3.Institute of Modern Physics, CAS, Lanzhou.
- 4.Institute of High Energy Physics, CAS, Beijing.
- 5. National Space Science Center, CAS, Beijing.

#### Italy

- 1.INFN Perugia and University of Perugia.
- 2.INFN Bari and University of Bari.
- 3.INFN-LNGS and Gran Sasso Science Institute.
- 4.INFN Lecce and University of Salento.
- Switzerland
  - 1. University of Geneva.









## The launch: Dec 17th 2015 & long-term status



- 1. The first satellite dedicated to natural (astronomical) science from China.
- 2. "Launches the (new) era of Chinese space science"- <Nature>
- Expected lifetime: 3 years
- Raw data: 16GB per day.
- Orbit: sun-sync. ~500km,
   ~95minutes
- Smooth operation since launch for more than 9 years.







## The launch: Dec 17th 2015 & long-term status



- 1. The first satellite dedicated to natural (astronomical) science from China.
- 2. "Launches the (new) era of Chinese space science"- <Nature>
- Expected lifetime: 3 years
- Raw data: 16GB per day.
- Orbit: sun-sync. ~500km,
   ~95minutes
- Smooth operation since launch for more than 9 years.











#### **DArk Matter Particle Explorer**



Four sub-detectors, 1.4 tons in total, 32 radiation length & 1.6 nuclear interaction length





## DAMPE's main sience





## **Indirect DM detection**







## **Gamma-ray astronomy**

Flux map with 9 years of DAMPE flight data



2024

2019

2014

DAMPE [0.3 m<sup>2</sup>sr]

CALET [0.1 m<sup>2</sup>sr]

AMS-02 [0.05 m<sup>2</sup>sr]

2028

Time [yr]



## Plastic scintillator detector









- 2 layers (x,y) of 88.4 cm × 2.8 cm × 1 cm
- $\triangleright$  Active area: 82 cm  $\times$  82 cm
- ➤ Weight: ~103 kg
- Power: ~ 8.5 W

Y. Yu et al., Astropart. Phys. 94 (2017)

100% effective area; high detection efficiency.



# Silicon (tungsten) track detector







- Detection area: 76 cm x 76 cm
- ➤ Total weight: ~154 kg
- Total power consumption: ~ 82W
- ➤ Three 1 mm tungsten plates for photon conversion (0.86 X<sub>0</sub>)

P. Azzarello et al. NIMA 831 (2016)

Total area is ~ 7 sqm; angular resolution ~ 0.1 degree



## The BGO Colorimeter







| Parameter                                                                                     | Value                                                                                   |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Active area Depth (radiation lengths) Sampling Longitudinal segmentation Lateral segmentation | 60 cm × 60 cm (on-axis) 32 ≥ 90% 14 layers ( ≈ 2.3 rad. lengths each) ~1 Molière radius |

➤ Total weight: ~1052 kg

➤ Total power: ~42 W
Z. Zhang et al. NIMA 780 (2015)

Excellent energy resolution for electron/positron above ~10s GeV; Excellent ability of separation between proton and electron(positron).



## The Neutron detector







- $> n + {}^{10}B \rightarrow \alpha + {}^{7}Li + \gamma$
- > 4 plastic scintillators
- > Active area: 60 cm x 60 cm
- > Total weight: ~12 kg
- > Total power: ~ 0.5 W

Y. Huang et al. Res. Astron. Astrophys. 20 (2020)

Enhancement of the ability for separation between p/e at high energy.



## Energy scale and linearity



- On-orbit energy scale verified with geomagnetic cut-off of CR e±
- Good linearity up to ~2.5 (100) TeV with electron (nuclei) events







## Results



# electron+positron spectrum



e- + e+ spectrum:



- Excellent ability of particle identification.
- Excellent energy resolution.







# electron+positron spectrum



#### e- + e+ spectrum:



#### **Work in process:**

- 1. Deep and long-term detector calibration.
- 2. New particle ID for high energies: Neural Networks (NN), Principal Component Analysis (PCA), Application of Neutron Detector (NUD)
- 3. Non-fiducial event selection and reconstruction





analysis up to ~15 TeV is in progress



# e<sup>+</sup>/e<sup>-</sup> spectrum towards low energy





DAMPE Collab., et al. CPC accepted, 2025

• DAMPE measurements from 10 to 20 GeV are consistent with the previous results of AMS-02 and PAMELA



## Proton, Helium







DAMPE Collab., et al. Sci. Adv. 2019;5 eaax3793

DAMPE Collab., et al. PRL 126, 201102 (2021).

- 1. Large acceptance.
- 2. Good charge identification.







## Proton, Helium, P+He







# Proton toward PeV (new updates)



- 1. Much more deepening understanding for the detectors and more statistics at higher energies.
- 2. New data processing approaches employed, i.e. ML tracking and Particle ID.
- 3. Updates and new approaches on detector calibration. Saturation.







- √ Very consistent with published results.
- **✓** Direct comparable with ground-based experiments.



# Helium (new updates)



- 1. Much more deepening understanding for the detectors and more statistics at higher energies.
- 2. New data processing approaches employed, i.e. ML tracking and Particle ID.
- 3. Updates and new approaches on detector calibration. Saturation.





√ Very consistent with published results.

Estimation of systematics in process



# Li, Be and B





- ✓ Light attenuation correction
- ✓ Light saturation correction
- ✓ Charge energy-Independence
- ✓ MC charge smearing correction

DAMPE collab., Phy. Rew. Lett. 134, 191001 (2025) Brono spectrum



20



√ A spectral hardening at ~ 200 GeV/n with sigma of CL. is observed

B/C B/O

 $\checkmark$   $\triangle \gamma$  is about twice vs. p & He, consistent with propagation model.



## C and O





- ✓ Extend to above 10 TeV/n with sufficient statistics in space
- √ Confirm the hardening at ~ 300 GeV/n and unveil the novel a softening at ~ 7.5 GeV/n (15 TV)



## C/O ratio





√ Hardening above a few TeV/n observed.



## Flux ratio















## CNO flux







- The spectrum of CNO group is measured up to 500 TeV
- A spectral hardening at ~9 TeV with > 6 sigma of CL. is observed.



# Much heavy nuclei's flux







# All-particle spectrum









- Different composition models are evaluated and applied in the analysis.
- Preliminary all-particle spectrum show a clear "knee" feature at tens of TeV, most probably due to the softening of different components (p,He dominant).



# Cross-section: p,He vs. BGO



#### A beam-target experiment

**Beam: CR particles** 

Target: BGO (Bi4Ge4O12)



DAMPE collab., Phy. Rew. D 111, 012002 (2025)



#### Survive possibility

Hadronic crosssection

$$\alpha_i = \frac{N_i}{\sum_{i=1}^{10} N_i}$$

 $\sigma_{true}(E) = (1 + \kappa) \cdot \sigma_{MC}(E)$ 

- Inelastic cross-section of p/He vs. BGO up to 10 TeV
- Effective validation for the hadronic models above TeV



## Cross-section: C,O vs. BGO



#### A beam-target experiment

**Beam: CR particles** 

Target: BGO (Bi4Ge4O12)









- Survive possibility
- $\alpha_i = \frac{N_i}{\sum_{j=2}^{10} N_j}$

Hadronic crosssection

$$\sigma_{true}(E) = (1 + \kappa) \cdot \sigma_{MC}(E)$$

- Inelastic cross-section of C/O vs. BGO up to 10 TeV
- Effective validation for the hadronic models above TeV



## Fermi bubbles, Galatic Center Excess



## Fermi-Bubbles (FB)



#### Galatic Center Excess (GCE)



FB: TS=757 (26.5σ for 11 dof)

• GCE: TS=72.8 (7.4 $\sigma$  for 6 dof)

√ First independent observations in space outside the Fermi mission.



# Heliosphere physics:Forbush decrease



● Forbush Decrease (FD) — CR follow-up of explosive solar activity, e.g. CME

 Large acceptance and polar orbit of DAMPE— allows precise FD measurement

# DAMPE collaboration, ApJL. 920 L43 (2021) 1.6 - CRE - Fit to date - CRE - Fit to dat





 $V_{CMF}\Omega(sr^1km^1s^{-1})$ 

New FD features for the relation: recovery time vs. decrease amplitude —> diverse properties of FDs

More events observed.

200



## Summary



#### DAMPE mission

- 1.DAMPE has been operating smoothly since Dec. 2015, for over 9 years.
- 2.Largest acceptance in space and good performance.
- 3. Potential for extension above 100TeV.
- 4. Stable operation to collect much more data.

#### Sciences

- 1.Direction observation of break at TeV in  $e^{\pm}$  spectrum.
- 2.P&He show the softening around ~15TV.
- 3.P+He confirms the softening and shows the hint above 100TeV.
- 4.C,O and CNO confirm the hardening at hundreds of GV, suggesting a Z-dependent softening.
- 5.B/C,B/O show the significant hardening above 100TeV/n, challenging the conventional models.
- 6. Secondary elements, Li,Be,B confirm the hardening around hundreds of GV.
- 7. Preliminary iron spectrum shows the hardening around 1TeV/n for the first time.
- 8. Confirm the FB. and GCE as a independent measurement.
- 9. Heliosphere physics in terms of low energy electron measurements, unique point of view.
- 10. Gamma ray catalog, gamma ray line searching, fractional charge particle search in space. (Not included in this talk.)

#### **Published**



## Summary



#### DAMPE mission

- 1.DAMPE has been operating smoothly since Dec. 2015, for over 9 years.
- 2.Largest acceptance in space and good performance.
- 3. Potential for extension above 100TeV.
- 4. Stable operation to collect much more data.

#### Sciences

- 1.Direction observation of break at TeV in  $e^{\pm}$  spectrum.
- 2.P&He show the softening around ~15TV.
- 3.P+He confirms the softening and shows the hint above 100TeV.
- 4.C,O and CNO confirm the hardening at hundreds of GV, suggesting a Z-dependent softening.
- 5.B/C,B/O show the significant hardening above 100TeV/n, challenging the conventional models.
- 6. Secondary elements, Li,Be,B confirm the hardening around hundreds of GV.
- 7. Preliminary iron spectrum shows the hardening around 1TeV/n for the first time.
- 8. Confirm the FB. and GCE as a independent measurement.
- 9. Heliosphere physics in terms of low energy electron measurements, unique point of view.
- 10. Gamma ray catalog, gamma ray line searching, fractional charge particle search in space. (Not included in this talk.)

#### **Published**





# Backup





## Energy fraction in shower maximum crystal

Energy fraction in the highest-energy crystal relative to total deposited energy in the BGO calorimeter





- High sensitivity to calorimeter status
- Validation of energy calibration via data—MC consistency





## **On-orbit calibration of BGO Calorimeter**

#### MeV scale

MIP signals precisely calibrate each individual detector unit

#### **GeV** scale

Geomagnetic cutoff of heavy nuclei serves as an absolute energy scale reference for higher energy

#### TeV scale

TeV electron shower cores verify detector performance and response







H. T. Dai et al, IEEE 67.6 (2020)



C. Zhao et al, NIMA 1029 (2022)

Energy calibration covers a wide dynamic range from MeV to TeV