

Ground-Based Gamma-Ray Astronomy

Particle Detection Array Qualities

6 High duty cycle

- ✓ Transients
- Wide field-of-view:
 - → Instantaneous: ≥ 1.8 sr (~15% of the sky)
 - → Surveys: ~ 8.4 sr per day (~2/3 of the sky)
 - ✓ Extended, large-scale, unexpected emission
- Good Sensitivity, Angular & Energy Resolution > 10 TeV
 - √ Highest energy accelerators

Particle Detection Array Qualities

High duty cycle

- √ Transients
- Wide field-of-view:
 - → Instantaneous: $\gtrsim 1.8 \text{ sr } (\sim 15\% \text{ of the sky})$
 - → Surveys: ~ 8.4 sr per day (~2/3 of the sky)
 - ✓ Extended, large-scale, unexpected emission
- Good Sensitivity, Angular & Energy Resolution > 10 TeV
 - √ Highest energy accelerators,

e-prints: arXiv:2506.01786vs2

	Science Case	Design Drivers
	Transient Sources:	Low-energy sensitivity &
	Gamma-ray Bursts	Site altitude ^a
	Galactic Accelerators:	High-energy sensitivity &
	PeVatron Sources	Energy resolution ^b
ı	Galactic Accelerators:	Extended source sensitivity
١	PWNe and TeV Halos	& Angular resolution ^c
ĺ		
	Diffuse Emission:	Background rejection
	Fermi Bubbles	
ı		
C C 1 SA 1 SA	Fundamental Physics:	Mid-range energy sensitivity
	Dark Matter from GC Halo	Site latitude d
	Cosmic-rays:	Muon counting capability ^e
	Mass-resolved dipole /	
	multipole anisotropy	

PRELIMINARY DESIGN TARGETS $E_{th} \rightarrow 100 \text{ GeV}$ E_{res} < 20% Θ_{res} ~ 0.1° CR_{res} @ 10-4

Example of Complementarity with IACTs

H.E.S.S. confirmed the gamma-ray
emission of four HAWC sources

among seven previously undetected by IACTs

Northern Hemisphere PDA Discoveries

Time since GBM trigger [s]

Ultra-high-energy gamma-ray bubble around

Article Published: 16 October 2024

SCIENCE • 8 Jun 2023 • Vol 380, Issue 6652 • pp. 1390-1396

Multi-messenger Network

Gamma-Ray Messenger

"[...] the Cherenkov Telescope Array (CTA) and the Southern Wide-Field Gamma-Ray Observatory

(SWGO) [...] will be valuable themselves - gamma rays reveal processes that longer-wavelength photons cannot - and will greatly enhance the returns of neutrino and gravitational-wave observatories."

Astro2020 Report

"The combination of CTA and LHAASO/ SWGO provides an integrated observational capability that maximizes the scientific opportunities

for all-sky multi-messenger astronomy."

- Astro2020 Report
- "... the Southern Wide-field Gamma-ray Observatory (SWGO) ... will have unprecedented sensitivity to the highest energies and [is] critical to carrying on the legacy of science at the forefront of particle and astroparticle physics."
- Report of the Topical Group on Cosmic Probes of Fundamental Physics for Snowmass 2021

A Global Collaboration

- \circ A growing project: 41 institutions in July 2019 \rightarrow > 90 institutions/16 countries now!
- Output Description
 Output Description
- ✓ Nov 2019: First SWGO Collaboration Meeting
- ✓ Sep 2022: Site Shortlist Complete
- ✓ Apr 2024: Performance of Candidate Configurations Evaluated
- ✓ **Jul 2024:** Preferred Site Identified

The Site & Layout

Map data: Google 2025
Satellite imagery: Landsat/Copernicus 2025
Illustration: M. Santander.

Inner Array Design & 1st Stage: SWGO-A

Outer Array Designs

Outer Array Designs

Under Consideration:

- 1. Inner-array like design
- Roto-molded HDPE tanks + multi-PMT modules
- 3. Possible UHE extension in a lake

Deployment of Lake Array

Under Consideration:

 Muon detectors are essential for gamma/hadron separation

2. Lake water provides good shielding of e[±] for free

Deployment of Lake Array

- 1. Muon detectors deployed five meters underwater
- 2. Smaller surface water Cherenkov detectors (SDs) floating on the lake surface

Deployment of Lake Array

- 1. Use LHAASO-KM2A as a reference layout
- 2. Preliminary reconstruction shows similar performance as LHAASO-KM2A

Prototyping Activities

- 1. Wave test at Nantes, France
- 2. Prototyping in an artificial lake at the LHAASO site

Staged Plan

- First presence: Pathfinder SWGO-PF
- Additional Component (already funded): The Utility for Radio Beam-formed Observations –
 SWGO-TURBO

Summary & Outlook

- SWGO is now moving toward construction after an intense 5-year design phase
- SWGO will
 - → become the most sensitive ground-based wide-field instrument at tens of TeV
 - → have synergies with CTAO, IceCube, KM3Net, LVK, and other instruments and contribute crucially to multi-messenger astronomy
 - → provide particle physics constraints at TeV energies
 - → tackle key science topics through observations of the Galactic Center/bright Galactic sources
 - → probe transient gamma-ray emission with full sky coverage together with HAWC and LHAASO

Thank You!