

Ziqi Huang

Shandong University & Institute of High Energy Physics, CAS

Searching for the Origin of UHECRs

- The Origin of Ultra-High-Energy Gamma-Ray(UHECR): A "Mystery of the Century".
- OA recognized grand challenge highlighted by the U.S. National Research Council and Science magazine.
- Multi-messenger Astrophysics: Gravitationalwave, Neutrino, Cosmic ray and Gamma ray.

Ground-based gamma-ray astronomy

• Imaging Atmospheric Cherenkov Telescope(IACT) arrays:

(H.E.S.S., VERITAS, MAGIC, CTA ...)

- → Angular resolution: 0.05°- 0.1°;
- → Duty cycle: ~10%;
- → field of view: <5°;
- → Energy threshold: <100 GeV;</p>
- → Mainly focused on deep observation.

Ground-level detector arrays :

(ASγ, ARGO-YBJ, Milagro, HAWC, LHAASO...)

- ◆ Angular resolution: 0.2~0.5°;
- Duty cycle: >95%;
- field of view: $>2/3\pi$;
- ◆ Energy threshold: >1 TeV;
- → Good at sky survey, extended sources.

Global Gamma-Ray Observatories Location

Comparison with detector at +29

SWGO: First Wide-field Instrument to the South Sky

The red markers correspond to TeV gamma-ray sources discovered by H.E.S.S., MAGIC and VERITAS

SWGO Lake Concept

LHAASO MD: nearly 600,000 cubic meters construction volume.

Project Goals:

- Sensitive at UHE
- significantly larger area than LHAASO
- Design to suit conditions in South America.
- Lake concept

Advantage:

- low cost
- modular design
- easy to install
- Artificial/Natural Lake

Prototype Surface Detector test in lab

- Black film for bladder
 - multi-layer co-extrusion technology
 - PE + EVOH + MLLDPE
 - light-tight and durable

- Geometry: Diameter 1.4 m Height 80/106 cm
- 8-inch PMT(R5912) gain: 6.7e5
- threshold: 7mV(~5 SPE)
- window:100ns

Event Rate and Detection Efficiency

Depth:80cm/ 106cm

Event rate:
2-coincidence rate of tagger 1,2

Theoretical value: calculated by dark count rate

change the position of taggers

Detection efficiency: 50 September 2.2 and PMT

Light Yield Analysis

In the experiment, the measured results are as follows: The total number of photons generated between wavelengths λ_1 and λ_2 in a medium of length L is given by:

$$N = \int_{\lambda_1}^{\lambda_2} \frac{2\pi L \alpha z^2}{\lambda_1^2} \sin^2 \theta_c \, d\lambda$$

If only the visible light region is considered, i.e., $\lambda = 400-700\,nm$, the number of photons per unit length is:

$$N/L = 490 \times \sin^2 \theta_c$$

To approximate the theoretical number of photons, consider the following approximations:

- 1. $\theta_c \approx 41^\circ$
- 2. The light-sensitive surface is approximately circular with a diameter of $\sim 20\,cm$.
- 3. Let r be the distance from the probe to MD-B-NO.0025, and d be the distance from the Cherenkov light emission point to the receiving surface. Then:

$$d = r/\tan\theta_c$$

The theoretical number of photons is:

$$N_{theory} \approx 490 \, cm^{-1} \times \frac{1}{2} \times 20 \, cm \times \frac{\pi \times 10^2}{\pi \left((r+10)^2 - (r-10)^2 \right)} = \frac{12250}{r}$$

Water Depth (cm)	Distance from Center (cm)	NPE (p.e.)	$\operatorname{product}$
106	25	56.66 ± 0.87	1416.5
106	45	31.74 ± 1.16	1428.3
80	25	49.75 ± 1.16	1243.5
80	45	27.82 ± 0.41	1251.9
80	65	21.02 ± 0.78	1366.3

NPE vs Distance

Time Resolution

Time_uptagger - Time_PMT

Time difference between taggers

Fit with gaussian curve to get σ as time jitter

Remove the influence of the tagger's intrinsic time jitter

Distance (cm)

Distance (cm)

$$\sigma_{
m detector} = \sqrt{\sigma_{
m all}^2 - \sigma_{
m tagger}^2}.$$

Installation at LHAASO site

a small on-water array and experimental platform in the lake at the LHAASO Site

flange-mounted PMT

Detector Prototype Deployment

Coincidence with KM2A

LHAASO-KM2A event rate: ~ 2500Hz

WSDA (water surface detector array) event rate: ~37Hz

matching timestamps with a 1000ns window Coincidence rate of WSDA and KM2A: ~9.15Hz.

Accident coincidence rate: ~0.19Hz << 9.15Hz

Shower Reconstruction

Position of WSDA and KM2A

Core position reconstructed by KM2A

Space angular between WSDA and KM2A

occupancy

Significantly larger area, why not significantly higher occupancy?

> Cherenkov emission mechanism: charged particle and energy restrict

× low energy γ

> The uniformity of detector: lower detection efficiency

Single particle peak

ED: a counter for the number of particles

Charge: mostly around several tens of pCs.

WCD: functions more like a calorimeter.

Charge: extend to several hundred pCs and even higher.

Time residual to shower front

Influence factor

- Signal of electromagnetic particle / muon
- Lake environment
- Reconstruction accuracy of WSDA

Summary

- Muon & EM Tests Completed
- **O**Room for Performance Improvement
- **OValuable Experience for Surface Detector Construction**
- **OFurther plans:**

Thank you!

- Adjusting the thresholds to test the changes in performance.
- Exploring optimizations for the detector structure.
- Conducting simulations for the full array.

backup

Prototype Muon Detector and Underwater test

- Fill the bladder with the water
- Overify the installation on the water surface
- The bladder is installed @Qingdao and LHAASO site respectively
- Some data is collected @LHAASO site, the single muon signal and water attenuation length are similar as those of LHAASO Muon detector.

installation in the lake @Qingdao

Installation @ LHAASO

Charge resolution ~ 50%; Mixed with Punch-through electromagnetic signals

Decay time: 117.5ns

Time residual to shower front

time difference between ED5283 and WCD

ED5283 time residual 20