

Cosmic-Ray Nuclei Flux Measurements with the DAMPE Experiment

Yifeng Wei
University of Science and Technology of China
(On behalf of the DAMPE Collaboration)

*Speaker: weiyf@ustc.edu.cn

The XIX International Conference on Topics in Astroparticle and Underground Physics Xichang, China, August 26th, 2025

Outline

- Motivation
- DAMPE Experiment
- Method
- Latest results
- Summary

Motivation

- CR nuclei
 - Primary components (p, He, C, O, ..., Fe, ...): Studying the origin and acceleration of cosmic rays
 - Secondary components (Li, Be, B, ...): Studying the propagation of cosmic rays
 - Elements beyond Iron (Ni,
 Zn, ...): Studying the the origin of elements beyond ion

DAMPE Mission

• **DAMPE** (悟空) is a satellite-borne particle detector proposed in the framework of the Strategic Pioneer Program on Space Science, promoted by the Chinese Academy of Sciences (CAS).

CNINA

- Purple Mountain Observatory, CAS
- University of Science and Technology of China
- Institute of High Energy Physics, CAS
- Institute of Modern Physics, CAS
- National Space Science Center, CAS

ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento
- INFN LNGS and Gran Sasso Science Institute

SWITZERLAND

- University of Geneva

DAMPE Detector

Functions of sub-detectors:

- Charge measurement (dE/dx in PSD, STK)
- Tracking and Gamma-ray conversion (STK and BGO)
- Precise energy measurement (BGO)
- Electron-hadron separation (BGO and NUD)

DAMPE Collab.,

Astropart.Phys. 95 (2017)

Parameter	Value
Energy range (e/γ)	5 GeV to 10 TeV
Energy resolution (e/γ)	1.5% at 800 GeV
Energy range (p/nuclei)	50 GeV to 500 TeV
Energy resolution (p)	~30% at 800 GeV
Charge resolution (p)	0.06 charge unit
Geometric factor (e)	0.3 m²sr above 30 GeV
Angular resolution (γ)	0.1 degree at 100 GeV

CR Proton & Nuclei Measurement with DAMPE

DAMPE Charge Distribution

Primary CRs:

CR origin / acceleration

- proton, Helium, p+He
- C, O, Ne, Mg, Si, Fe, ...

Secondary CRs: CR propagation

- Li, Be, B, ...
- Sub-Iron

Elements beyond Iron:

• Ni, Zn, ...

All particle spectrum

Flux Measurement

• Flux in *i*-th incident energy bin:

$$\Phi(E_i, E_i + \Delta E) = \frac{N_{obs}(E_i, E_i + \Delta E)}{A_{eff,i}T_{exp}\Delta E_i}$$

- Φ : Absolute differential flux (m-2sr-1GeV-1s-1)
- N_{obs} : Number of observed events
- $A_{e\!f\!f,i}$: Effective acceptance (m²sr), $A_{e\!f\!f}=\varepsilon_{trig}\varepsilon_{sel1}\ldots\varepsilon_{selN}A_{geo}$
- T_{exp} : Exposure time (s)
- ΔE_i : Width of energy bin (GeV)

Data Sample

- 9 years flight data
- Data in South Atlantic
 Anomaly (SAA) region
 are excluded
- Data during Sep.2017
 Solar Flare are excluded
- Detector's dead time is excluded
- $T_{exp} \sim 2.18 \times 10^8 \text{ s}$ (~76.8% live time)

Key Point I: Charge Identification

 N_{obs} : Determined by the charge ID

Key Point I: Charge Identification

 N_{obs} : Determined by the charge ID

10

Key Point I: Charge Identification

- N_{obs} : Number of events falling within the charge signal range
- Charge selection efficiency and contamination are determined by the template fit.

Key Point II: Energy Measurement

E: Measured by the calorimeter

Ion beam:

Key Point II: Energy Measurement

 Bayesian unfolding method is used to obtain event counts as a function of CR kinetic energy

$$P(E_{true,j} | E_{meas,i}) = \frac{P(E_{meas,i} | E_{true,j})P(E_{true,j})}{\sum_{k} P(E_{meas,i} | E_{true,k})P(E_{true,k})}$$

- Baseline simulation: GEANT4
 - FTFP_BERT model
 - EPOS-LHC (> 100 TeV)
- FLUKA (DPMJET III) is used for comparison

Key Point II: Energy Measurement

Measure and validate
 hadronic cross sections for
 p, He, C, and O up to 10 TeV

A beam-target experiment

Beam: CR nuclei

Target: BGO (Bi₄Ge₃O₁₂)

Acceptance

$$\Phi(E_i, E_i + \Delta E) = \frac{N_{obs}(E_i, E_i + \Delta E)}{A_{eff,i}T_{exp}\Delta E_i}$$

$$A_{eff,i} = A_{gen} \times \frac{N_{pass,i}}{N_{gen,i}}$$

- A_{gen} : the geometrical factor of the MC generation, for a sphere source $A_{gen}=4\pi^2r^2$
- N_{gen} : the numbers of generated events
- N_{pass} : the numbers of events passing all selections

Physical Results

Primary CRs

Secondary CRs & Ratios

Elements beyond Iron

Summary

DAMPE Experiment

- Smooth on-orbit operation for 9.5 years
- An analysis method for cosmic-ray nuclei was presented
- Key results obtained. Ongoing analysis continues.

Physical program

- p, He, p+He universal softening at ~15 TV, approaching the PeV frontier
- C, O, CNO observation of hardening, evident softening at ~ 15 TV (vs. p, He)
- Ne, Mg, Si, Fe observation of hardening, extending to above 10 TeV/n
- Secondaries: Li, Be, B, B/C, B/O secondary hardening twice that of primaries.

Summary

DAMPE Experiment

- Smooth on-orbit operation for 9.5 years
- An analysis method for cosmic-ray nuclei was presented
- Key results obtained. Ongoing analysis continues.

Physical program

- p, He, p+He universal softening at ~15 TV, approaching the PeV frontier
- C, O, CNO observation of hardening, evident softening at ~ 15 TV (vs. p, He)
- Ne, Mg, Si, Fe observation of hardening, extending to above 10 TeV/n
- Secondaries: Li, Be, B, B/C, B/O secondary hardening twice that of primaries.

Backup

Fiducial Selection

- High energy trigger
- Select events with energy above the geomagnetic cutoff
- Select events that fall within the field of view (FOV).
 - Reliance on the reconstructed track (two methods: Kalman filter & Machine learning)

Charge Measurement

STK beam test

• Using multi-layer charge reconstruction

Corrections in Energy Measurement

Quenching — nonlinear fluorescence response of BGO for large ionization

- correction derived from beam test and flight data
- implemented in the detector simulation, ~3% effect for p at 10 GeV

Saturation of BGO bars at ~100 TeV CR kinetic energy:

corrections derived using analytical and ML methods

Corrections in Energy Measurement

We use the measured DAMPE values to correct inelastic cross sections in Monte-Carlo