

Hai Chen (Zhejiang University)

On behalf of AMS Collaboration

TAUP 2025, August 26th, Xichang

Lithium Isotopes in Cosmic Rays

- □ Lithium nuclei are among the rarest in the Solar System (Li/Si~10⁻⁴), yet they are relatively common in cosmic rays (Li/Si~1);
- □ They consist of two stable isotopes, ⁶Li and ⁷Li;
- □ Both ⁶Li and ⁷Li are thought to be produced by collisions of heavier cosmic-ray nuclei with the interstellar medium;
- □ They are called secondary cosmic rays.
- □ The total Lithium flux has been presented by AMS in 2018. (*Phys. Rev. Lett. 120, 021101*)

Precise measurement of the cosmic-ray ⁶Li and ⁷Li isotope fluxes provides insights into the origin and propagation of lithium nuclei.

On the Origin of ⁷Li

The origin of ⁷Li is still not yet well understood:

- 1) ⁷Li may contain a primordial component from Big Bang Nucleosynthesis, and its predicted abundance from BBN does not match the value inferred from stellar and cosmological observations, or cosmic-ray data (*Lithium problem*).
- 2) Another ⁷Li primary component can be produced from ⁷Be decay by electron capture at astrophysical sources.
- 3) The AMS total lithium flux (⁶Li+⁷Li) measurement could not be described by secondary lithium propagation models, possibly due to the presence of a primary component in the ⁷Li flux.

Lithium Measurement Before AMS

- □ Over the last 50 years, several experiments have measured the ⁷Li/⁶Li ratio as a function of kinetic energy per nucleon only below 1.2 GeV/n with ~20% errors, or as a function of rigidity below 6.3 GV with ~15% uncertainties.
- ☐ The Lithium isotope fluxes have been measured only below 0.3 GeV/n (below $\sim 1.9 \text{ GV}$ in rigidity) in 1979.

In this talk, we present the unique and precision measurements of the ⁶Li and ⁷Li fluxes in the rigidity range from 1.9 to 25 GV.

Mass Measurement in AMS

In AMS, mass is determined by simultaneous measurements of Charge Z (Tracker, TOF, RICH), Rigidity R (Tracker), and Velocity β (TOF, RICH-NaF, RICH-Aerogel):

$$M = \frac{ZR}{\beta \gamma} \qquad \frac{\Delta M}{M} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\gamma^2 \frac{\Delta \beta}{\beta}\right)^2}$$

Lithium Event Selection

- \Box Charge measurements on Tracker L1, TOF, and Inner Tracker are required to be compatible with Z = 3.
 - The background from interactions in the material between Tracker L1 and L2 is evaluated by fitting the charge distribution of Tracker L1 with templates of Li, Be, B, and C (negligible <0.1%).
 - The background from interactions in materials above Tracker L1 has been estimated from simulation using MC samples generated according to AMS flux measurements.

Velocity Resolution

- The rigidity resolution function, determined from MC simulations, has been extensively verified with the data in previous studies.
- The Lithium velocity resolution functions of TOF and RICH are determined from MC simulation and verified with data with β ~1 events by selection on Rigidity > 100 GV.
- As seen, the MC simulation agrees well with the data.

Inverse Mass Template

The event number of Lithium isotopes are obtained by fitting the measured inverse mass distribution 1/M with ⁶Li and ⁷Li inverse mass templates.

- The MC inverse mass templates have been verified with the ⁷Li data using the geomagnetic cutoff as a filter.
- As seen, the MC simulation also agrees well with the data.

Inverse Mass Template Fitting

As an example, inverse mass distributions for ${}^6\text{Li} + {}^7\text{Li}$ data (black points) for two E_K bins for the RICH-NaF and the RICH-Agl are shown below.

- These E_K bins correspond to ⁷Li rigidity bins of [5.37-5.90] GV, and [22.8-24.7] GV, respectively;
- The mass peak of ⁶Li (purple) and ⁷Li (green) are clearly separated;
- The red curves show the fits of the sum of the ⁶Li and ⁷Li MC templates to the data with good agreement.

AMS ⁷Li/⁶Li Ratio and Flux

Based on 9.7×10^5 6Li and 1.04×10^6 7Li nuclei collected by AMS from May 2011 to October 2023.

- \Box AMS Φ(7 Li)/Φ(6 Li) ratio as a function of kinetic energy per nucleon, together with earlier measurements.
- □ First result in the energy range above 1 GeV/n.

- \Box AMS individual Φ(7 Li) and Φ(6 Li) as functions of rigidity, together with time variation (color band).
- ☐ First result as a "flux" form of Lithium isotopes.

⁷Li and ⁶Li Flux Time Variation

- □ The AMS ⁶Li, ⁷Li, and He as functions of time for four characteristic rigidity bins.
- □ As seen, in each rigidity bin the three fluxes exhibit a nearly identical time behavior, and the relative magnitude of the variations decreases with increasing rigidity.

To study the differences in time variation for $\Phi(^6\text{Li})$, $\Phi(^7\text{Li})$, and $\Phi(\text{He})$ in detail, we define a *k factor* to demonstrate the slopes of the linear dependence between nuclei:

$$\frac{\Phi_{i}^{^{6}\text{Li}}/\Phi_{i}^{\text{He}} - \langle \Phi_{i}^{^{6}\text{Li}}/\Phi_{i}^{\text{He}} \rangle}{\langle \Phi_{i}^{^{6}\text{Li}}/\Phi_{i}^{\text{He}} \rangle} = k_{i}^{^{6}\text{Li}} \frac{\Phi_{i}^{\text{He}} - \langle \Phi_{i}^{\text{He}} \rangle}{\langle \Phi_{i}^{\text{He}} \rangle},$$

$$\frac{\Phi_{i}^{^{7}\text{Li}}/\Phi_{i}^{\text{He}} - \langle \Phi_{i}^{^{7}\text{Li}}/\Phi_{i}^{\text{He}} \rangle}{\langle \Phi_{i}^{^{7}\text{Li}}/\Phi_{i}^{\text{He}} \rangle} = k_{i}^{^{7}\text{Li}} \frac{\Phi_{i}^{\text{He}} - \langle \Phi_{i}^{\text{He}} \rangle}{\langle \Phi_{i}^{\text{He}} \rangle},$$

⁷Li and ⁶Li Modulation

As can be seen from the *k factor* of 6Li and 7Li isotopes as a function of rigidity:

- □ From 1.9 to 3.6 GV, both $k(^6\text{Li})$ and $k(^7\text{Li})$ are below zero, showing that $\Phi(^7\text{Li})$ and $\Phi(^6\text{Li})$ are less modulated than $\Phi(\text{He})$ in this rigidity range;
- □ From 1.9 to 4.0 GV, $k(^7Li)$ is smaller than $k(^6Li)$, indicating that $Φ(^7Li)$ is less modulated than $Φ(^6Li)$ in this rigidity range;
- Above 4.0 GV, $k(^6\text{Li})$ and $k(^7\text{Li})$ are both compatible with zero, showing that $\Phi(^6\text{Li})$, $\Phi(^7\text{Li})$, and $\Phi(\text{He})$ exhibit identical variations higher than ~ 4 GV.

Analysis on ⁷Li/⁶Li Ratio

To study the rigidity dependence of $\Phi(^7\text{Li})/\Phi(^6\text{Li})$ ratio, it has been fitted over the entire rigidity range with power law:

$$\Phi^{^{7}\text{Li}}/\Phi^{^{6}\text{Li}} = \begin{cases} K(R/R_0)^{\Delta_1}, & R \le R_0, \\ K(R/R_0)^{\Delta_2}, & R > R_0. \end{cases}$$
(1)

- Arr The fit yields R₀ = 7.2 ±0.4 GV, Arr = 0.21 ±0.01, and Arr Arr = -0.002±0.011 with a Arr Arr /d.o.f. of 23.8/24.
- Arr Δ₂ is consistent with zero, which confirms that Φ(6 Li) and Φ(7 Li) have an identical rigidity dependence above R₀~7 GV.

Models on ⁷Li/⁶Li Ratio

The time-averaged $\Phi(^7\text{Li})/\Phi(^6\text{Li})$ ratio is compared with the predictions of propagation models GALPROP and USINE based on AMS total Lithium flux measurement.

- As seen, both models fail to describe the AMS result on Φ(⁷Li)/Φ(⁶Li);
- ☐ GALPROP with a primary ⁷Li component deviates from AMS data with excess of ⁷Li above a few GV;
- The USINE model prediction, which assumes pure secondary origin of ⁶Li and ⁷Li, does not agree with the AMS measurements neither, within the model uncertainties that are related to the production cross sections from heavier nuclei.

Estimation of Primary ⁷Li Fraction

Using the AMS Oxygen flux, $\Phi(O)$, as an estimator of the primary ⁷Li flux contribution, and the AMS ⁶Li flux, $\Phi(^6\text{Li})$ for the secondary ⁷Li flux contribution:

$$\Phi_{\text{primary}}^{7\text{Li}} = f_{\text{O}} \times \Phi^{\text{O}}$$

$$\Phi_{\text{secondary}}^{7\text{Li}} = c \times \Phi^{6\text{Li}}$$

$$\frac{\Phi^{7\text{Li}}}{\Phi^{6\text{Li}}} = c + \frac{f_{\text{O}} \times \Phi^{\text{O}}}{\Phi^{6\text{Li}}}$$
(2)

- > The fit yields $c = 1.17^{+0.02}_{-0.03}$ and $f_0 = 0^{+0.0027}_{-0}$, with a $\chi^2/\text{d.o.f.}$ of 12/13.
- > This corresponds to a fraction of the primary ⁷Li flux of <3% at the 90% C.L.

$$\Phi^{^7\mathrm{Li}} = \Phi^{^7\mathrm{Li}}_{\mathrm{primary}} + \Phi^{^7\mathrm{Li}}_{\mathrm{secondary}}$$

Summary

- □ Precision measurements of the cosmic-ray ⁶Li and ⁷Li fluxes have been presented in the rigidity range from 1.9 to 25 GV.
 - We observed that over the entire rigidity range the ⁶Li and ⁷Li fluxes exhibit nearly identical time variations;
 - Above ~4 GV, the time variations of ⁶Li, ⁷Li, He fluxes are identical;
- □ Above ~7 GV, we found an identical rigidity dependence of the ⁶Li and ⁷Li fluxes.
- □ These results show that both ⁶Li and ⁷Li are produced by collisions of heavier cosmic-ray nuclei with the interstellar medium, and excludes the existence of a sizable primary component in the ⁷Li flux.