

Cosmic Ray Isotopes

Physics of Cosmic Deuterons D

Primary Cosmic Rays (⁴He, C, O, ...) + Interstellar Media \rightarrow (D,³He,...) + X

D and ³He are thought to be both secondary cosmic rays, produced by the collision of primary cosmic rays with the interstellar medium.

Measurement of Isotopes: Cosmic rays with same Z, different m

Isotope Fluxes

AMS Deuteron and ³He

D flux is harder than ³He

D/³He flux ratio increases with rigidity

AMS Helium Isotopes: consistent with secondary ³He

Origin of Cosmic Deuterons D

AMS results disagree with the latest model with D as secondary cosmic rays

Propagation of cosmic rays in the heliosphere

Due to the solar activities and solar magnetic field, cosmic rays spectrum change with time.

D and ⁴He carry the same A/Z ratio.

D/4He ratio is expected to be less affected by the solar modulation.

Time variation of Deuteron Fluxes

Over the entire rigidity range, the Deuteron flux exhibits similar time variations with the *proton*, ³He, and ⁴He fluxes.

Relative magnitude of time variation

To study the difference of solar modulation effects on D and ⁴He, the relation of $\Phi_D^i/\Phi_{4_{He}}^i$ ratio and $\Phi_{4_{He}}^i$ is fit by the linear function:

$$rac{\Phi_{\mathrm{D}}^{i}/\Phi_{4_{\mathrm{He}}}^{i}}{\left\langle \Phi_{\mathrm{D}}^{i}/\Phi_{4_{\mathrm{He}}}^{i}
ight
angle} - 1 = k_{D}^{i} \left(rac{\Phi_{4_{\mathrm{He}}}^{i}}{\left\langle \Phi_{4_{\mathrm{He}}}^{i}
ight
angle} - 1
ight)$$

 $k_{
m D}>0$, $\Phi_{
m D}$ exhibit more variation than $\Phi_{4_{
m He}}$ $k_{
m D}=0$, $\Phi_{
m D}$ exhibit same variation as $\Phi_{4_{
m He}}$ $k_{
m D}<0$, $\Phi_{
m D}$ exhibit less variation than $\Phi_{4_{
m He}}$

Time variation of Deuteron Fluxes

$$rac{\Phi_{\mathrm{D}}^{i}/\Phi_{4_{\mathrm{He}}}^{i}}{\left\langle \Phi_{\mathrm{D}}^{i}/\Phi_{4_{\mathrm{He}}}^{i}
ight
angle -1=\ oldsymbol{k_{D}^{i}}\left(rac{\Phi_{4_{\mathrm{He}}}^{i}}{\left\langle \Phi_{4_{\mathrm{He}}}^{i}
ight
angle -1
ight)$$

Below 4.5 GV, D flux Φ_D exhibit more variation then ⁴He;

Above 4.5 GV, $\Phi_{\rm D}/\Phi_{4_{\rm He}}$ is independent of time.

The flux ratio of ${}^{3}\text{He}/p$ decreases with rigidity above 4 GV.

If D is pure secondary, the flux ratio of D/p must also decrease with rigidity above 4 GV The flux ratio of D/p increases with rigidity and is constant above 13 GV.

D must have an additional primary source

Rigidity dependence of D/4He and 3He/4He

D/⁴He and ³He/⁴He exhibit single power law dependence ($\propto R^{\Delta}$) above 4.5 GV.

$$\Delta \left(\frac{D}{4_{He}} \right) > \Delta \left(\frac{3_{He}}{4_{He}} \right)$$

D spectrum is harder than ${}^{3}\text{He}$ with a significance >10 σ

³He is secondary.

How much primary component does D contain?

Deuterons have a significant primary component

Model uncertainty 20% - 50%

The AMS-02 Cosmic-Ray Deuteron Flux is Consistent with a Secondary Origin, Qiang Yuan and Yi-Zhong Fan, Astrophys.J.Lett. 974 (2024) 1

Secondary Deuteron

Multiple Components of Cosmic Deuteron

Cosmic-ray deuteron excess from a primary component,

Xing-Jian Lv, Xiao-Jun Bi, Kun Fang, Peng-Fei Yin, and Meng-Jie Zhao

arXiv:2409.07139,

Phys.Rev.D 110 (2024) 12, 123030

Summary

- AMS Precision measurements of the deuteron (D) flux, based on 21 million D nuclei in the rigidity range from 1.9 to 21 GV, are presented.
- Over the entire rigidity range, the D flux exhibits similar time variations with the p, ³He, and ⁴He fluxes. Yet below 4.5 GV, D shows larger variation (more modulated) than ⁴He.
- Above 4.5 GV, the D/ 4 He flux ratio is time independent and its rigidity dependence is well described by a single power law (\propto R $^\Delta$) with $\Delta_{D/4He} = -0.108 \pm 0.005$, in contrast with the 3 He/ 4 He flux ratio $\Delta_{3He/4He} = -0.289 \pm 0.003$.
- Above ~13 GV, D and p fluxes exhibit identical rigidity dependence with a D/p = 0.027 ± 0.001.
- These unexpected observations show that cosmic deuterons have a sizable primary like component. With a method independent of cosmic ray propagation, we obtain
 - The primary component of the D flux equal to (9.4 ± 0.5)% of the ⁴He flux
 - The secondary component of the D flux equal to $(58 \pm 5)\%$ of the ³He flux.
- Current model have large uncertainty and new developments are needed.

Estimation of Tol background

$$rac{\Phi_{\mathrm{D}}^{i}/\Phi_{4_{\mathrm{He}}}^{i}}{\left\langle \Phi_{\mathrm{D}}^{i}/\Phi_{4_{\mathrm{He}}}^{i}
ight
angle} - 1 = rac{k_{D}^{i}}{\left\langle \Phi_{4_{\mathrm{He}}}^{i}
ight
angle} - 1
ight)$$