

FASER - New experiment at the LHC Run3

FASER has started operation since July 2022

Idea and Motivation

The LHC produces an intense and strongly collimated beam of highly energetic particles in the forward direction.

e.g. $10^{14} \, \pi^0$ within 1 mrad of beam

Light New Physics: A', ALPs, DM

SM Physics: ve, vµ, vt

Explore a rich **BSM** and **SM** physics programs in the far farward region

FASER

- ForwArd Search ExpeRiment (FASER) at the LHC
 - ▶Placed 480 m downstream of the ATLAS IP on the beam axis
 - ▶Started the operation from July 2022 (LHC run3)
- Physics motivation
 - **New long-lived particle searches in MeV-GeV masses** ■
 - **▶All flavors of neutrinos** at the **TeV-energy frontier**

- Favorable location
 - Very low background from collision
 - Only high-energy muon at about 1/cm²/sec
 - Low radiation level from the LHC
 - 4×10⁶ 1-MeV neutron/cm²/year

Scintillators for veto, trigger, and preshower (particle ID)

Collider neutrinos w/ FASER>

\sqrt{s} = 13.6 TeV \rightleftharpoons lab. frame 100 PeV p-p interaction

Possible to study hadron interaction models of neutrino flux e.g. application into air-showers study like prompt neutrino

GeV-TeV ν beam

Fill gaps between fixed target experiments and cosmic-ray experiments w/ highest energy human-made TeV neutrinos

FASERv (Emulsion-based detector) Sensitive to all 3 flavors

- Two strategies for measurements
 - Emulsion-based detector → all flavor sensitive
 - "Electonic" detector technique $\rightarrow \nu_{\mu}/\bar{\nu_{\mu}}$ separation
- \sim 10,000 neutrinos should be collected

Generators		$FASER\nu$ at Run 3		
light hadrons	charm hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + ar{ u}_{\mu} $	$ u_{ au} + ar{ u}_{ au} $
EPOS-LHC	_	1149	7996	_
SIBYLL 2.3d	_	1126	7261	_
QGSJET 2.04	_	1181	8126	_
PYTHIAforward	_	1008	7418	_
-	POWHEG Max	1405	1373	76
_	POWHEG	527	511	28
_	POWHEG Min	294	284	16
Combination		1675^{+911}_{-372}	8507 ⁺⁹⁹² ₋₉₆₂	28+48

FASERv (Emulsion-based detector) Sensitive to all 3 flavors

"Electric" detector technique Charge separation $\nu_{u}/\nu_{\bar{u}}$

Flux uncertainties

- about 10-15% from light hadrons
- 50-100% from charm

Observing Neutrino in FASER spectrometer

- Try to make a first observation of neutrinos using trackers and veto system
- Signal: no signal in two front veto and one high momentum track in the rest of detector
 - 1. Good collision events
 - 2. No signal (<40 pc) in 2 front vetos
 - 3. Signal (>40 pC) in other 3 vetos

- 4. Timing and preshower consistent with ≥1 MIP
- 5. Exactly **1 good fiducial** (r < 95 mm) track
- $p_T>100$ GeV and $\theta<25$ mrad
- Extrapolating to r<120 mm in front veto

Expect 151 ± 41 signals from GENIE simulation

- Uncertainty from DPMJET vs SIBYLL
- No experimental errors

Background

- Veto inefficiency: negligible
- Neutral hadrons: 0.11±0.06
 events (MC)
- Scattered large-angle muons:
 0.08±1.83 events (sideband)

First detection of collider neutrino

- Upon unblinding find 153 events with no veto signal
 - Just 10 events with one veto signal
- First direct detection of collider neutrinos!
 - With signal significance of 16σ
- Candidate neutrino events match expectation from signal
 - Observed both neutrinos and anti-neutrinos as we expected

Phys. Rev. Lett. 131, 031801 (2024)

Candidate	Events
u enriched Events (Passed all event selection)	153, (151±41, MC)
Events (1 veto signal at the first layer)	4
Events (1 veto signal at the second	6
Events (Veto signals for both layers)	64014695

Track momentum distribution

Updates in 2025: Observed events and kinematics

362 observed $\label{eq:cc} \mathbf{322 \pm 51} \ \nu_{\mu} \ \mathbf{CC} \ \mathbf{expected + 24} \ \mathbf{non-} \nu_{\mu} \ \mathbf{CC} \ \mathbf{BG}$

Muon momentum is unfolded into neutrino energy with $\nu_\mu/\bar{\nu_\mu}$ separation

Interpretations of ν_{μ} interaction rate

- FASER's result can be interpreted in two ways
 - Neutrino Cross-sections
 - Flux measurements hadron production measurements

Achieved first $\bar{\nu_{\mu}}$ cross-section measurements!!

Neutrino measurement with rapidity distribution

To study the characterization of forward hadron production at the LHC

CERN-FASER-CONF-2025-001

- Define five rapidity bins (annular regions) around line of sight (black cross)
- Rapidity from transverse position of reconstructed muon, then unfolded to neutrino rapidity

FASERv Emulsion detector

Emulsion/tungsten detector

- 730 x [tungsten plates(1.1 mm thickness) + emulsion films] 25×30 cm², 1 m long, 1.1t (220 X_0)
- Emulsion films are replaced every 20-30 fb⁻¹
 - (3 times per year)

flavor tagging with topological/kinematical informations

FASERv Emulsion detector

Emulsion/tungsten detector

- 730 x [tungsten plates(1.1 mm thickness) + emulsion films] 25×30 cm², 1 m long, 1.1t (220 X_0)
- Emulsion films are replaced every 20-30 fb⁻¹
 - (3 times per year)

flavor tagging with topological/kinematical informations

FASERy Emulsion detector

Emulsion/tungsten detector

- 730 x [tungsten plates(1.1 mm thickness) + emulsion films] 25×30 cm², 1 m long, 1.1t (220 X_0)
- Emulsion films are replaced every 20-30 fb⁻¹
 - (3 times per year)

flavor tagging with topological/kinematical informations

FASERv Analysis toward ν_e and ν_u detections

Data set:

- 2022 second module \rightarrow 9.5 fb⁻¹;
- Target mass: 128.6 kg;
- ~ 1.7% of data collected to date.

Selection criteria:

Vertex reconstruction:

• $N_{\text{track}} \geq 5$

• $N_{\text{track}}(\tan\theta \le 0.1) \ge 4$

Lepton requirements:

- E_e or $p_{\mu} > 200 GeV$
- $tan\theta_e$ or $tan\theta_{\mu} > 0.005$

Back-to-back topology: $\Delta \phi > 90^\circ$

Background model

ν_e events

- $E_e = 1.5$ TeV, highest ν_e measured
- MC normalized to number of observed events.

u_{μ} events

- $p_{\mu} = 360 \text{ GeV}.$
- MC normalized to number of observed events.

Results from FASER ν : ν_{μ} and ν_{e} events!

Interaction	Expected background	Expected signal	Observed	Significance
v _e CC	$0.025^{+0.015}_{-0.010}$	1.1 – 3.3	4	5.2σ
ν _μ CC	$0.22^{+0.09}_{-0.07}$	6.5 – 12.4	8	5.7σ

- ullet First observation of u_e at the LHC!
- First neutrino cross-section measurement in the TeV range!
- Large uncertainty from neutrino flux

Forward hadron producution Study

• Experimental test of forward pion, Kaon, and Charm production at the LHC CERN-FASER-CONF-2025-004

Summary

- LHC-FASER is taking data in Run3 of LHC operation, we had collected ~190 fb⁻¹ collected and since then another 55 fb⁻¹
- Providing timely physics results
 - First ν_e, ν_μ x sections (with 2 % of data)
 - First $\bar{\nu_u}$ x-section and, differential x-section
 - Neutrino rapidity distribution

Prospects

- Additional 180 fb⁻¹ to be collected in 2024. 2025
- FASER in Run4 approved
- Discussing extended physics programs
 - Forward Physics Facility (2031-) in HL-LHC era
 - Details are In this paper

Acknowledgement

