

He recycling system for SuperNEMO 0vββ detector

Elvis Penghui Li

Supervisor: Cheryl Patrick, Xalbat Aguerre

CPPM Supervisor : José Busto, Hichem Tedjditi

Institutions: University of Edinburgh, UK, Centre de Physique des Particules de Marseille, FR

SuperNEMO Experiment Double-beta decay Neutrinoless double-beta decay

ββ event with full event topology reconstruction in SuperNEMO

 $(A,Z) \rightarrow (A,Z+2) + 2e^- + 2\bar{\nu}_e$

Tracker: 2034 gas-filled drift cells Helium: 95% Inert gas → reduce energy loss Argon:1% Low ionisation energy → avalanche propagation Ethanol: 4% quenching → stop avalanche

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

Gas circulation in SuperNEMO

Double beta decay experiment: Needs low radon activity

SuperNEMO radon trap : Cannot tolerate ethanol

SuperNEMO gas recycling: Needs to remove ethanol Old SuperNEMO gas flow:

New SuperNEMO gas flow:

* No-Ethanol System for SuperNEMO

My work on the SuperNEMO helium reycling system

2-step ethanol removal system Condense ethanol from 4% to 70ppm with cryogenic bubbler Remaining 70ppm cleaned by adsorption to < 1ppm

Gas quality checked by mass spec

Schematic of the Helium Recycling

Expected recycling efficiency ≥ 80%

Mix recycled helium and argon with fresh helium

Mixing flow rate based on mass spec reading

Compressor system Commerical system from

BAUER Recycled gas compressed to 150 bars

Integrated into CMS for emergency START/STOP

Elvis Penghui Li, on behalf of the SuperNEMO collaboration

