

Scientific Prospects and Technical Innovations in the CDEX-50 Experiment

Shin-Ted Lin (Sichuan University, China)
On behalf of the CDEX collaboration

@ The XIX International Conference on Topics in Astroparticle and Underground Physics (TAUP2025)

August 26th, 2025

Outline

- ✓ CDEX collaboration/program
- ✓ Recent results from CDEX-1 & CDEX-10 @CJPL-I
- ✓ Advancing key Ge technologies: R&D and Background Reduction
- Current status of CDEX-50 Experiment@CJPL-II
- ✓ Summary & prospects

China Dark matter Experiment

- ✓ Established in 2009, 11 institutes, ~100 members.
- \checkmark DM and $0v\beta\beta$ experiment based on Ge detectors at CJPL.
- ✓ Many DM & Neutrino physics results published in last 10 years.

http://cdex.ep.tsinghua.edu.cn/

Direct detection in dark matter searches

We know only 5% of what the universe made of?

A picture for IF DM is a particle, unitality invariant, ...

- √ ~27% of the Universe consists of dark matter
- ✓ WIMP(χ), ALP are the most popular dark matter candidates, and χN elastic scattering is intensively studied in recent years.
- Current wisdom in PP: $[\sigma_{\chi N} \ \ VS \ m_{\chi}]$

Toward the unexplored lower mass region...

Conventional WIMPs and other alternatives

Astrophysics Particle physics

$$\frac{dR}{dE_R} = N_T \frac{\rho_{\chi}}{m_{\chi}} \int d^3 \vec{v} v f_v(\vec{v} + \vec{v}_E) \frac{d\sigma}{dE_R}$$
Detector response

MeV

keV

ALP

WIMP search

- Annual modulation PRL 2019
- PRD 2022 • Boosted WIMP: down to O(10 keV)
- Migdal effect (bremsstrahlung) PRL 2019
- χe scattering down to $\mathcal{O}(10 \text{ MeV})$ PRL 2022
- DM from EFT Science china 2021

New physics beyond the WIMPs

- Axion like particle: down to $\mathcal{O}(100~\mathrm{eV})^{\textit{PRD 2020}}$
- Dark photon: down to $\mathcal{O}(100 \text{ eV})$ PRL 2020
- Exotic DM: down to $\mathcal{O}(1 \text{ MeV})$ PRL 2022
- Boosted keV-MeV DM from evaporating primordial BH. PRD 2023

GeV χ -e scattering

TeV

CDEX Roadmap

- ✓ CDEX-1 (2011-2018): Development of PPC Ge detector, BKG understanding
- ✓ CDEX-10 (2016-2022): Performances of Ge detector(detector fabrication-homemade) immersed in LN₂
- ✓ CDEX-50dm (2021-202x): An array of 50 kg Ge detectors in cryogenic liquid for DM searches [Energy region of interest: O(100 eV)]

CDEX-300v (2021-202x): An array of enriched 300 kg Ge detectors in cryogenic liquid with an optimal low-radioactivity experimental setup for Searches of neutrino(0vββ) and diversified new physics

CDEX-1 CDEX-10

CDEX-50
(DM)

CDEX-1000

CDEX-300v
(0νββ)

See Wenhan Dai's talk

2011-2018

2016-2022

China Jinping Underground Laboratory(CJPL)

CDEX

- ✓ World's deepest underground lab, CJPL
- ✓ Near Xichang city, Sichuan Province, Southwest China
- √Two DM exp. (CDEX, PandaX)+LBF(radio-assay)+Neutrino exp.
 operated now

Cheng et al., Annu. Rev. Nucl. Part. Sci. 2017. 67:231

CDEX-1, CDEX-10 Experiments

- ✓ 2 sub-stages: CDEX-1A (2011) → CDEX1B (Electronics upgraded, 2013);
- ✓ Singular element ~1kg PPC Ge detector;
- ✓ NaI, enclosed the cryostat of Ge, served as anti-Compton detector.
- ✓ Located in PE room at CJPL-I.

- ✓ Array detectors: 3 strings with 3 detectors each, ~10 kg total;
- \checkmark An array immersed directly in LN₂;
- Prototype system for future hundred-kg to ton scale experiment
 - Light/radio-purer LN₂ replacing heavy shield i.e. Pb/Cu;
 - Arraying technology to scalable capability;

$\chi-N$ elastic scattering results from CDEX-1B &10

- □ CDEX-1B: > Threshold of 160 eV is achieved.
 - ✓ First extended the mass to 2 GeV/c² in Ge-based experiments.
- \checkmark The most sensitive results on SD χN elastic scattering below 4 GeV
- □ CDEX-10: > No event exceeds the expected background level near the threshold.
 - ✓ The leading bounds on SI χN elastic scattering at 4-5 GeV

Annual Modulation WIMPs Searches from CDEX-1B

- ✓ Long-time stability with low background & low energy threshold.
- ✓ Explore the new AM detection channel below the mass of 6 GeV/c²

Light WIMP searches with Migdal Effect

- ✓ Migdal effect (ME):
 - Elastic scattering: $\chi + N \rightarrow \nu + N(E_R)$
 - Migdal effect: $\chi + A \rightarrow \chi + N(E_R) + e^-(E_{EM})$
- The electrons has finite probability that they do not follow the motion of the nuclei such that the electrons of the target atom will be excited or ionized, i.e., high-energy electrons are ejected via inelastic $\chi-N$ scattering process.

ME with Earth's effects are integrated CDEX into the particle-trajectory simulation

Best results at 50-180 MeV region for light WIMPs searches.

Solar Axion & ALP results

- ✓ Background assumption:
 - Continuous background + X-rays
- ✓ Profile likelihood method
- ✓ Excellent energy resolution of Ge is suited for the monochromatic DM axion and Fe-57 axions
- ✓ Competitive g_{Ae} constraints exist for m_a : 100eV ~ 1keV

Solar dark photon & DPDM results

CDEX

- ✓ Solar is the most significant dark photon source.
- ✓ Detection method: $V + A \rightarrow A^+ + e^-$
- ✓ The expected event rates:

$$\frac{dR}{dE} = V \frac{E}{|\vec{q}|} \left(\frac{d\phi_T}{dE} \Gamma_T + \frac{d\phi_L}{dE} \Gamma_L \right)$$

- depending on dark photon flux $\phi_{T,L}$, the dark photon absorption rates $\Gamma_{T,L}(m_V,\kappa)$ in Ge
- ✓C10-B1 experiment
 - Threshold: 160eVee
 - Background level 2.5 cpkkd @ 2~4 keV
 - Exposure: 205.4 kg day
- ✓ The most stringent limits on κ with mass of 10 to 300 eV/c² for solar dark photon

Exotic DM results

 \checkmark New low mass $\mathcal{O}(\text{MeV}/c^2)$ dark matter (χ) may interact with nucleon (N):

Neutral current fermionic DM absorption: $\chi + N \rightarrow \nu + N^{[1]}$ DM-nucleus 3->2 scattering: $\chi + \chi + N \rightarrow \phi + N^{[2]}$

- ✓ C10-B1 (205.4 kg-day exposure) with flat background assumption.
- ✓ New experimental limits on lowest mass range is placed for these two channels based on the low energy threshold of 160 eV.

$\chi - e$ scattering

- ✓ Light χ can potentially pass most of the energy onto electrons, depositing observable energy via χe scattering
- \checkmark A DM-electron scattering paradigm proves to be successful extend m_{γ} to $\mathcal{O}(10\,MeV)$
- ✓ The total rate can be written as

$$R_{i\to f} = \frac{2\pi\overline{\sigma}_e}{V\mu_{\chi e}^2 m_\chi} \frac{\rho_\chi}{\rho_T}.$$

$$\sum_{i,f} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \left(\frac{f_e}{f_e^0}\right)^2 F_{\mathrm{DM}}^2 g(\mathbf{q},\omega) |f_{i\to f}(\mathbf{q})|^2,$$

dark matter form factor

1: heavy mediator

 q_0/q : electric dipole coupling

 $(q_0/q)^2$: ultralight mediator

Crystal form factor

 $m_{\gamma}[{\rm MeV}/c^2]$

> Ge crystal: incorporated by the effects of Semiconductor & Atoms.

R&D on Key Ge Technologies to the CDEX's goals

- ➤ Ge detector fabrication: Various types, P-type planar/coaxial, P-type point-contact/BEGe/ICPC successfully fabricated. Two batches of commercial enriched Ge detector arrived in CJPL, 22 det. in total.
- ➤ Ge crystal growth: Developing technology; 200kg ⁷⁶Ge (>86%) arrived, half from Russia and half from China, where the shield tunneling technique has been employed for surface transportation.
- > ULB-VFE(Very Front End) ASIC + Bare Ge immersed in LN₂ cryostat : ENC ~10 e-; silicon substrate (U/TH < 60 μ Bq/kg)
- ➤ Low counting facilities in underground: U/Th analysis by ICP-MS, blank sensitivity ~10⁻¹³g/g; Electro-form Copper technology is built.
- > R&D on LAr/SAr/(LN with scintillating) detectors

CDEX-50 Experiment

CDEX

- ✓ Technical Indicators
- Background: <0.01 cts/(keV·kg·day) during
 2-4 keV;
- Energy analysis threshold: 160 eV;
- Exposure volume : 50 kg·year;
- 3H cosmogenic radionuclides in crystal's dominate background
- Experimental setup: Array of 50 kg natural germanium detectors in liquid nitrogen

Projected sensitivities of CDEX-50 experiment

- ✓ The sensitivities of CDEX-50: 10⁻⁴⁴ cm² level @ 4-8GeV WIMP mass.
- Exploration of multi physics channels as well as the annual modulation effect

Modeling Detector Response: A Molecular Dynamics Simulation Approach to the Quenching Factor

Stopping process of nuclear recoil event

> A good agreement with experimental data is achieved in Si detectors

Nuclear and electronic stopping

See Chang-Hao Fang's talk

- > Unlike Lindhard's QF models, which yield a deterministic recoil energy function, molecular dynamics approach accounts for probabilistic variations in monoenergetic reionization energy.
- > Extending the search for WIMPs into the GeV to sub-GeV range with germanium ionization detectors

Outlook & Prospects

- > DM search: Missing Mass Density & GR Problem is the most intriguing & important one in basic science.
- > Compelling evidence of Dark Matter existence inspires the searches of DM/New Physics in particle physics. WIMPs, Axions, Dark Photons... are popular/motivated candidates. Other alternatives could be new favorite?
- CDEX has involved and made a diverse & significant contributions to the Ge technology/science community: Mass production of ⁷⁶Ge isotope material and Ge detectors; ASIC-PreAMP-Ge detectors; Large underground space at the deepest CJPL; Underground Ge crystal growth and detector fabrication for cosmogenic background reduction.
- The new Facilities AND Communities add to the world's arsenal on exciting dark matter & neutrino experiments requiring deep locations.

Thank you for your time and participation.

Backup Slides

HPGe Technology --- Ge Detector Fabrication

✓ Home-made different types of Ge detectors by CDEX group;

✓ Detector performances are same with commercial products with

long-term stability.

Key technical Steps:

- ✓ Commercial Ge crystal;
- ✓ Structure machining;
- ✓ Li-drift and B-implanted;
- √ Home-made ASIC PreAmp;
- ✓ Underground EF-Cu;
- ✓ Underground assemble;
- ✓ Underground testing...

Enriched ⁷⁶Ge Material Supply

- 200kg ⁷⁶Ge (>86%) stored at CJPL, half from Russia and half from China.
- CDEX has the largest amount of 76 GeO₂ powder in hand now in the world.
- The mass production power (Hundreds of kg each year) of enriched ^{76}Ge material has been setup in China and it is a crucial contribution to the International ^{76}Ge Ov $\beta\beta$ experiment community.

HPGe Technology-ASIC PreAMP + LN2 Cryostat

ASIC PreAMP

 \square The first $Ge+ASIC+LN_2$ detector in the world:

500g Ge & home-made CMOS ASIC preamp immersed into LN₂

□ Works with expected performance

Fabricated and Tested in CJPL-I

Background spectrum @CJPL 26