

Gamma-Ray and AntiMatter survey(GRAMS) experiment

August, 2025, TAUP 2025

Jiancheng Zeng

Northeastern University

On behalf of GRAMS collaboration

What is GRAMS?

GRAMS = Gamma-Ray and AntiMatter Survey

- □First balloon/satellite experiment to target both
 - □ Astrophysical observations with **MeV gamma rays**
 - □Indirect dark matter searches with cosmic antinuclei
- □First balloon/satellite mission with a low-cost, large-scale LArTPC (liquid argon time projection chamber) detector
- □Funded by NASA as a Physics of the Cosmos suborbital experiment

MeV Gamma-Ray Observations

□MeV region is poorly measured due to domination of Compton scattering. Detectors require good spatial and energy resolution

MeV Gamma-ray Science

□Physics processes/nucleosynthesis □Transition of physics processes in MeV □Particle acceleration in Pulsar Wind Nebula □Relativistic flows in stellar/super-massive BHs, pulsars, magnetars □Nuclear lines from radioactive isotopes in astrophysical environments

- ☐Galactic center, classic novae, SNe, etc
- □r-process for the origin of heavy elements

□Multi-messenger astrophysics

- □MeV gamma rays + GWs
- □MeV gamma rays + high-energy neutrinos
 - □NS/BH mergers, GRBs, SNe, AGNs

□Indirect Dark Matter and PBH searches

□Large-scale, low-energy threshold LArTPC has been well-studied and widely-used in underground dark matter and neutrino experiments

Charged Particle

Gamma Ray: Compton Scattering

Pair-Production

□Large-scale, low-energy threshold LArTPC has been well-studied and widely-used in underground dark matter and neutrino experiments

□Large-scale, low-energy threshold LArTPC has been well-studied and widely-used in underground dark matter and neutrino experiments

□Large-scale, low-energy threshold LArTPC has been well-studied and widely-used in underground dark matter and neutrino experiments

Why LArTPC?

□LArTPC is cost-effective and easily expandable to a larger scale, Almost no dead volume and high detection efficiency

	LArTPC	Semiconductor/Scintillator
ρ (g/cm³)	1.4	2.3/5.3 (Ge/Si)
Toperation	~80K	~240K/~80K
Cost	\$	\$\$\$
Signals	Scintillation light + ionization electrons	Electrons, holes
X, Y positions	Wires/pads on anode plane (X-Y)	Double-sided strips
Z position	From drift time	From layer #
# of layers	Single layer	Multi-layers
# of electronics	#	###
Dead volume	Almost no dead volume	Detector frame, preamps
Neutron bkg	Identified with pulse shape	No rejection capability

MeV Gamma-ray Observations

- **□Single balloon** flight:
 - □Order of magnitude improved
- **□Satellite** mission:
 - □Comparable to future missions

MeV Gamma-ray Observations

- **□Single balloon** flight:
 - □Order of magnitude improved
- **□Satellite** mission:
 - □Comparable to future missions

Indirect DM Searches

Finding products generated by DM self interaction

GRAMS Antideuteron Sensitivity

 $oldsymbol{\square}$ Low energy $ar{D}$ gives an essentially background-free signature

□Extensively explore DM parameter space and validate Fermi/

AMS-02 results

Next generation measurement beyond GAPS

General AntiParticle Spectrometer

□Current generation low energy antiparticles experiment

Mengjiao Xiao's talk Search for Cosmic-Ray Antinuclei from Dark Matter with the GAPS Antarctic Balloon Mission yesterday

GAPS instrument is READY in Antarctica planed for flight in late 2025

GRAMS Antimatter detection

Measure atomic X-rays and annihilation products

- A time of flight (TOF) system tags candidate events and records velocity
- The antiparticle slows down & stops, forming an excited exotic atom
- De-excitation X-rays provide signature
- Annihilation products provide additional background suppression

Particle identification with the combination of

TOF timing, stopping range, pion/proton multiplicities, energy depositions in plastic/LArTPC, atomic X-rays

GRAMS Antimatter detection

□ Aside from unique X-Ray peak, Antihelium-3 or Antideuteron has unique behavior in LArTPC detector

Charge-2 CRs particles tend to deposit more energy in TOF detector

J. Zeng et al, https://doi.org/10.1016/j.astropartphys.2025.103152

GRAMS antihelium-3

☐ GRAMS could investigate a variety of DM models, complementary to AMS-02

measurements of X-rays and charged pions from the decay of the exotic atoms, Time of Flight (TOF), energy

Engineer flight eGRAMS

□Successful engineering flight @JAXA TARF

- ☐ First LArTPC operation at stratosphere
- ☐ TPC: 10 x 10 x 10 cm³
 - ☐ 1 PMT (Hamamatsu R6041-06) at the bottom
 - ☐ 3 charge channels (pGRAMS preamps)
 - ☐ No cooling/circulation system
- ☐ Pressure vessel for RPi/DAQ
- ☐ Obtained ~400k stable events with light + charge

Preamp

eGRAMS in July 2023

Antiproton Beam Test at J-PARC, February 2025

- □@J-PARC in Feb 2025
 - ☐ Antiprotons with 0.7 GeV/c
 - ☐ Validated LArTPC performance as an antimatter detector
 - ☐ TOF + Aerogel Chrenkov detector to reject pion events
 - ☐ Waseda TPC: 30 cm x 30 cm x 30 cm
 - ☐ Measure annihilation products: pions (and protons)

Led by the **GRAMS Japanese team**

Prototype Flight (pGRAMS), Spring 2026

- ☐ Scheduled @Arizona in **Spring 2026**
 - ☐ Demonstrate LArTPC performance in flight
 - ☐ Particle tracking for charged particles
 - ☐ Gamma-ray detection
 - ☐ MiniGRAMS: 30 x 30 x 20 cm³ segmented into 9 cells
 - ☐ Tile/pads (~3mm pitch) for x/y directions
 - ☐ 180 charge channels, 36 light channels
 - ☐ Currently testing MicroGRAMS @Northeastern
 - ☐ TPC size: 10 x 10 x 10 cm³
 - ☐ Demonstrate the particle tracking and event reconstruction
- ☐ Science flights with MiniGRAMS
 - ☐ One of the **largest** Compton cameras
 - ☐ Cooling/circulation system onboard

Funded by NASA APRA2022

First science flight focus on MeV gamma-ray and particle tracking

Charge readout tile

- □2D readout tile
 - ☐ More stable than wire-mesh readout for balloon payload
 - □Power saving comparing to pixel readout

Charge readout tile

- □2D readout tile
 - ☐ More stable than wire-mesh readout for balloon payload
 - □Power saving comparing to pixel readout

Charge readout tile

- □2D readout tile
 - ☐ More stable than wire-mesh readout for balloon payload
 - □Power saving comparing to pixel readout

MiniGRAMS tile

MiniGRAMS light readout

□9x SiPM cell array □more compact than PMT

One VIS SiPM channel P.E spectrum, cr: Jon Sensenig

SiPM board designed by Jonathan LeyVa

GRAMS collaboration and timeline

International collaboration with different backgrounds/expertise Gamma-rays, X-rays, Cosmic-rays, Neutrinos, Direct/Indirect DM searches

■ Barnard College

■ NASA GSFC

Berkeley

UT Arlington

☐ Yale University

☐ USA □ International ☐ Hiroshima University ☐ IPMU ☐ JAXA ■ Kanagawa University ☐ Kyoto University ■ Nagoya University ■ National Defense Medical College Osaka University ☐ RIKEN ☐ Rikkyo University ☐ Tokyo University of Sciénce ■ Universität Würzburg ■ University of Tokyo ■ Waseda University Yokohama National

University

Columbia University Howard University Northeastern University Oak Ridge National Lab ☐ University of California, ■ University of Chicago Washington University 2020

2025 2030 eGRAMS flight Science flights

Summary

□GRAMS aims for both gamma-ray observations in the poorly explored MeV range and indirect dark matter searches with antimatter. The project started with a balloon experiment and will be expanded to a satellite mission. □With a cost-effective, large-scale LArTPC detector, the sensitivity to MeV gamma rays can be an order (two orders) of magnitude improved with a single balloon flight (Satellite) compared with the previous missions. □GRAMS low-energy antinuclei measurements can be essentially backgroundfree dark matter searches while investigating and validating the possible dark matter signatures indicated in Fermi GCE (Galactic Center Excess) and AMS-02 antiproton excess. □We successfully demonstrated the LArTPC detector performance during the engineering flight from the JAXA balloon facility and the antiproton beam test at J-PARC. □ As a step forward for future science flights, we will have a **prototype flight**

scheduled for Spring 2026, supported by the NASA APRA program.

Thanks!

zeng.jia@northeastern.edu JCZeng1412@gmail.com

Backup slides

Indirect DM Searches

□Uncertain astrophysical backgrounds make indirect searches harder

We need background-free searches!

pGRAMS system diagram

pGRAMS E-field

pGRAMS electronics

□Charge Sensitive Pre-amp(CSP) that works in cryo front end, minimize the pickup noise after readout tile

	0.25us/keV	1us/keV	1.5us/keV	4us/keV	5us/keV	6us/keV
0pF dummy	31.8	19.2	18.1	15.6	17.1	20.6
50pF dummy	55.517	37.58	33.165	23.363	24.528	21.523
50pF 1000 events	76.872	45.527	40.48	27.033	25.46	22.642
50pF no pump	185.83	43.64	47.49	25.89	21.3	21.35
50pF UPS	96.17	89.26	48.86	27.78	30.48	29.64
50pF celling GND	66.66	37.06	NaN	22.53	24.7	22.71
50pF foam/sleeve/celling GND	91.32	36.58	31.38	21.64	19.13	19.95
50pF extra power GND	77.54	38.6	34.35	22.72	18.92	18.98

S. Arathi preparing performance analysis paper

miniGRAMS

SiPM board

- Texas Instruments LMH6629
 - Input noise: 0.69 nV/√Hz and 2.6 pA/√Hz
 - 900 MHz bandwidth (includes controllable compensation feature that sacrifices bandwidth for improved stability at gains as low as 4V/V)
 - 1600 V/µs slew rate
 - Hetero-junction BJT, good for low temp stability
 - Typical power consumption with 3.4V (+/- 1.7V) of dynamic range → ~30 mW @ T=87K

Impact of LArTPC thickness

 Randomly generate antideuteron from the sky and collect events that stop and annihilate inside LArTPC.

Detector horizontally expand

□Original design:

 $140cm \times 140cm \times 20cm$

□MAX design:

 $320cm \times 320cm \times 20cm$

TPC shape

Tracker + TOF 900kg	TOF CONF 1424	1
	TPC thickness	
TPC length [cm]	[cm]	
50	8	38.2
60	ϵ	52.8
70	4	16.2
80	3	34.8
90	2	26.6
100	2	20.7
110	1	6.2
120	1	2.7
140		7.8
160		4.6
180		2.3
200		0.8
300	-	-2.9
600	-	-4.8

Tracker + TOF 1100kg	TOF CONF 1424
TPC length [cm]	TPC thickness [cm]
50	130
60	93.7
70	69.9
80	53.5
90	41.8
100	33.1
110	26.6
120	21.6
140	14.4
160	9.7
180	6.5
200	4.1
300	-1.4
600	-4.4

Tracker + TOF 1300kg	TOF CONF 1424
TPC length [cm]	TPC thickness [cm]
50	171.7
60	124.6
70	93.6
80	72.2
90	56.9
100	45.6
110	37.1
120	30.5
140	21.1
160	14.9
180	10.6
200	7.5
300	0.2
600	-4

TOF CONF 1424
TPC thickness [cm]
213.5
155.5
117.2
90.9
72
58.1
47.5
39.4
27.7
20
14.7
10.8
1.7
-3.7

GRAMS Status Report Meeting 35

TPC Shape

Mass budget comparison

