Constraint on Lorentz invariance violation: First combined limit from a cooperation of Imaging Atmospheric Cherenkov **Telescopes**

Ugo Pensec for the γ LIV WG 27 August 2025

Outline

- Lorentz Invariance Violation
 - Context
 - Current limits
- 2 The γ LIV working group (H.E.S.S., MAGIC, VERITAS and LST-1)
 - IACTs
- Combination
 - Sources
 - Results
- Conclusion

Lorentz invariance violation

- Lorentz invariance is fundamental in modern theories (QFT & GR)
- However, for $E \sim E_{Pl} = \sqrt{\hbar c^5/G} \approx 1.22 \times 10^{19}$ GeV, some quantum gravity models (QG) allow for the interaction of spacetime fluctuations with photons, modifying their propagation in vacuum according to their energy
 - ⇒ Lorentz invariance violation (LIV)
- Study this phenomenon \checkmark determine characteristic QG energy E_{QG} \checkmark fix constraints on different models predicting LIV
- Phenomenology: use of a generic modified dispersion relation (MDR) based on a series expansion:

$$E^{2} = \rho^{2}c^{2} \times \left[1 \pm \sum_{n=1}^{\infty} \left(\frac{E}{E_{QG,n}}\right)^{n}\right]$$
 (1)

Subluminal or superluminal LIV $\rightarrow \pm$ Experiments are only sensitive to n=1,2

Experiments are only sensitive to n=1,2

Note that E_{QG} is often compared to E_{PI} , but could be very different from it

Time delays

MDR ⇒ Photon speed depends on its energy

⇒ Time delay between photons with different energies (emitted from the same source at the same time):

$$\Delta t_n \simeq \pm \frac{n+1}{2} \frac{E_h^n - E_l^n}{H_0 E_{OG}^n} \kappa_n(z), \qquad (2)$$

with κ_n the source distance parameter (κ_n increases with z and encodes the space-time model), for n=1,2.

Fig. 1. Different models for κ [Caroff *et al.*, 2025, Phys. Rev. D]. Other relevant models will be added in the future analysis paper.

August 27, 2025

Time-of-flight studies

In practice we want to constrain or measure the lag parameter

$$\lambda_n = \frac{\Delta t_n}{\Delta E_n \, \kappa_n(z)} \simeq \pm \frac{n+1}{2H_0 E_{OG}^n} \tag{3}$$

so we need sources

- emitting very high energies and large energy range to maximise $\Delta E_n = E_h^n E_l^n$;
- located far away, so that the speed difference is observed as a large time delay between photons: d>1kpc and up to $z\sim0.1$ and more (interaction with the extragalactic background light is limiting for z>1 \Rightarrow very high luminosity sources);
- and variable

Candidates = Blazar flares, GRBs, and pulsars

Source types

Active galactic nuclei (AGN)

Blasar flare : VHE (up to \approx 10 TeV), $z\sim$ 0.1, active phases happen regularly (up to several times a year) and can last several days

Gamma Ray Bursts (GRB)

VHE (up to \approx 10 TeV), up to $z\approx$ 1, but brief (few seconds to few minutes) and unpredictable

Pulsars

HE (up to ≈ 1 TeV), galactic sources, strong variability \rightarrow accumulate data to improve sensitivity

6/19

Ugo Pensec August 27, 2025

Current status

- For now: best lower limits obtained on E_{QG} are $\sim 10 E_{Pl}$ for individual, bright GRBs
- Best limit obtained from the combination of several GRBs observed by Fermi-LAT is $\sim 10^{17}$ GeV [Ellis et al. 2019 Phys.Rev.D]
- Different sources have different advantages → interesting to combine their strength and use sources at different distances ⇒ population study
- No population study available at TeV energies yet \leadsto creation of the γ -LIV working group, which is also preparing CTAO LIV analyses

The γ LIV working group (H.E.S.S., MAGIC, VERITAS and LST-1)

Goal

Get a combined limit using all available sources (GRBs, flaring AGNs, pulsars) detected by all IACT experiments, plus some Fermi-LAT GRBs \rightarrow first population study at TeV energies

Already achieved

- LIVelihood: analysis framework (unbinned maximum likelihood approach), to simulate, analyse and combine results from different experiments
- Code tested on simulated data → first paper [Bolmont et al. 2022 ApJ]

On-going

- Combination of real datasets: 3 BL-Lac flares observed by LST-1, GRB190114C observed by MAGIC, one 1ES 1959+650 flare observed by VERITAS and one PKS2155-304 flare observed by H.E.S.S. (presented here)
- Combination of all the available datasets from the 4 collaborations

Ugo Pensec August 27, 2025

Imaging Atmospheric Cherenkov Telescopes

Imaging Atmospheric Cherenkov Telescopes

Likelihood technique

Idea:

Define a *template lightcurve* from LE photons. Compare arrival time of HE photons to this template.

Likelihood formula [Martinez & Errando, 2008 Astrop.Phys.]

$$\frac{dP}{dE_m dt} = \frac{w_s}{N_s} \int A(E_t, \epsilon) M(E_t, E_m) \Gamma_s(E_t) C_s(t, E_t; \lambda) dE_t + \text{bkg. contrib.}$$

A is the effective area, M the energy migration matrix, Γ_s the spectrum of the source and C_s is the template lightcurve λ is the likelihood parameter to be measured or constrained

$$L(\lambda) = -\sum_{i} \log \left(\frac{dP}{dE_{m}dt} (E_{m,i}, t_{i}; \lambda) \right)$$
 (5)

Likelihood technique

Idea:

Define a *template lightcurve* from LE photons. Compare arrival time of HE photons to this template.

Likelihood formula [Martinez & Errando, 2008 Astrop.Phys.]

$$\frac{dP}{dE_m dt} = \frac{w_s}{N_s} \int A(E_t, \epsilon) M(E_t, E_m) \frac{\Gamma_s(E_t)}{\Gamma_s(E_t)} \frac{C_s(t, E_t; \lambda)}{C_s(t, E_t; \lambda)} dE_t + \text{bkg. cont}$$
(4)

A is the effective area, M the energy migration matrix, Γ_s the spectrum of the source and C_s is the template lightcurve λ is the likelihood parameter to be measured or constrained

$$L(\lambda) = -\sum_{i} \log \left(\frac{dP}{dE_{m}dt}(E_{m,i}, t_{i}; \lambda) \right)$$
 (5)

Fig. 4. Likelihood computed from a list of simulated photons following the template time distribution. Minimum and confidence interval at 1σ (L=0.5) are indicated.

11 / 19

BL-Lac lightcurves (preliminary)

BL Lacertae

Bright flaring blazar (z=0.069) 3 flaring nights selected after a scan of all AGN data from 2021 to May 2025 (34 sources, 505 nights) Analysis by Cyann Plard and Sami Caroff from LST observations

PKS 2155-304 lightcurve (preliminary)

PKS 2155-304

Bright and regularly flaring blazar (z = 0.116)

Long term monitored by H.E.S.S.

Flare of July 29, 2006 [Aharonian et al, 2009, A&A]

Analysis by me (Ugo Pensec) and Julien Bolmont from H.E.S.S.

1ES 1959+650 lightcurve (preliminary)

1ES 1959+650

Bright flaring blazar (z=0.047) Flare of May 20, 2012 [Aliu *et al.*, 2014, ApJ]. Analysis by Samantha Wong from VERITAS

GRB 190114C lightcurve

GRB 190114C

Bright GRB (z=0.425) On January 14, 2019 [Acciari *et al.*, 2019, Nature] Analysis by Tomislav Terzic from MAGIC

[Acciari et al., 2020, Phys. Rev. Lett.]

Reconstruction of the lag with the combined sources

Using an **unbinned maximum likelihood** approach, contributions add up: [Bolmont *et al.* 2022 ApJ]

$$L_{\text{comb}}(\lambda_n) = \sum_{\text{all sources}} L_{\mathcal{S}}(\lambda_n).$$

Fig. 5. Likelihood computed on the **real data** from the 4 flares.

Minimisation gives: $\lambda_{\rm rec} = -80^{+78}_{-98}$ s/TeV at 95% CL.

Sources of bias:

- Computational parameters (discretisation of the IRFs)
- IRFs are assumed constant over each observation run

Reconstruction of the lag with the combined sources

Using an **unbinned maximum likelihood** approach, contributions add up: [Bolmont *et al.* 2022 ApJ]

Fig. 5. Likelihood computed on the **real data** from the 4 flares. **Minimisation** gives: $\lambda_{\rm rec} = -80^{+78}_{-98} \ {\rm s/TeV}$ at 95% CL.

Fig. 6. Correction of the bias computed with bootstrap simulations $\lambda_{\rm rec}$ becomes $\lambda_{\rm rec} = -9.3^{+78}_{-08}$ s/TeV at 95% CL.

August 27, 2025

Results from the combination

2 models: ·J&P, a common model in LIV searches ·DSR model designed to cancel the contribution of GRB 190114C

Limits (n=1) (Preliminary result)

 $\begin{array}{ccc} & & & & J\&P & & DSR \\ \text{superluminal} & & 4.44 \times 10^{18} \text{ GeV} & & 0.448 \times 10^{18} \text{ GeV} \\ \text{subluminal} & & 5.58 \times 10^{18} \text{ GeV} & & 0.615 \times 10^{18} \text{ GeV} \end{array}$

/!\ Analysis doesn't take into account all the systematics

⇒ combined limit will be reduced

Fig. 7. Current limits on $E_{J\&P,1}$ (subluminal)

Conclusion

- First constraint on LIV derived from a collaborative analysis combining real data from all major IACTs: H.E.S.S., MAGIC, VERITAS, and the LST-1 of CTAO
- Result obtained using different source types, spread over a wide range of redshifts
- · Competitive limit obtained, which enhances the robustness and sensitivity of LIV searches
- Demonstrate the scientific value of cooperation in LIV studies in the IACT community
- Current goal: combine all other available sources (other observation of blazar flares are available, as well as pulsars and GRBs from the four experiments)
- Work currently ongoing on studying different lag-redshift models

Thank you!

Source intrinsic effects

Fig. 8. LIV or intrinsic effect?

Examples

Acceleration mechanism, source extension...

Solution

- population study: mitigate the intrinsic effects influence by looking at sources of the same type but at different distances
- modelisation: constrain intrinsic effects with modelisation of acceleration mechanisms

Ugo Pensec August 27, 2025

Lag-redshift models

J&P

$$\kappa_n^{J\&P}(z) = \int_0^z \frac{(1+z')^n}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} dz'$$
 (6)

Doubly Special Relativity

$$\kappa_n^{DSR}(z) = \int_0^z \frac{h^{2n}(z')}{(1+z')^n \sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} dz'$$
 (7)

with

$$h(z') = 1 + z' - \sqrt{\Omega_m (1 + z')^3 + \Omega_\Lambda} \times \int_{2}^{z'} \frac{dz''}{\sqrt{\Omega_m (1 + z'')^3 + \Omega_\Lambda}}$$
(8)

4 D > 4 A > 4 B > 4 B > B | B | 9 Q Q