2025/08/25

Radon-222 Screening Capability and Research at SNOLAB

Dr Nasim Fatemighomi (she/her)

Staff Scientist

On behalf of SNOLAB Assay Group

TAUP 2025, Xichang, China

Introduction

- ²²²Rn progeny are backgrounds to low energy neutrino and rare-event searches
- Emanates from material surfaces
- Present in SNOLAB air ~ 120 Bq/m³
 - N₂ is widely used as a cover gas to keep radon out of experiments
- SNOLAB supports low level ²²²Rn screening at site using four different radon extraction boards
 - Measure ²²²Rn concentration in ultra pure water (UPW), N₂ and ²²²Rn emanation from materials

Underground Radon Assay Systems

Water radon board (Refurbished in 2019)

• Sensitivity: $(1.5 \pm 0.5) \times 10^{-14} \text{ g}^{238}\text{U/gH}_2\text{O}$ equivalent (slides 5-8)

(DOI: 10.1016/j.nima.2003.10.103)

SNO+ mobile board (Refurbished in 2021)

- Used primarily for N₂ gas assays
- Board emanation rate: 44 ± 7 Rn atoms/day
- A new radon trap was developed to enhance gas assay sensitivity (slides 9-16)

(DOI: 10.1016/j.nima.2025.170422)

Surface Radon Emanation Systems

SNOLAB radon emanation board (built 2021)

 High sensitive radon emanation measurement SNOLAB technical report:

(SNOLAB-STR-2022-001) - available on request

- Chamber emanation rate: 4 ± 2 Rn atoms/day
- Radon research and development

DEAP-3600 board (refurbished 2023)

- The board emanation rate
 - < 6 Rn atoms/day@90% CL
- Testing new radon detectors

Water Radon Assay System

- Designed and built by the SNO collaboration (DOI: 10.1016/j.nima.2003.10.103)
- Operated by SNOLAB and SNO+ to monitor ²²²Rn level of SNO+ cavity UPW and SNOLAB UPW plant

Water shielding (7000 tonnes UPW)

Degasser

Water trap (-60 C)

V203: Between Acrylic Vessel and PMTs

- Results are consistent with SNO times
- SNOLAB UPW plant radon level is $(2.4\pm0.7)\times10^{-14}g^{238}U/gH_2O$ equivalent = (0.14 ± 0.04) Rn atoms/L

SNOLAB/SNO+ Gas Assay System

Gas system
filled with N₂

- Originally designed for vacuum radon emanation measurement
- Has been adopted to perform N₂ gas assays
 (SNO+/SNOLAB gas systems and PICO-500)

Primary Trap Limitation for Gas Assays

- Radon traps use porous materials to enhance trapping
- Bronze wool highly efficient under high vacuum
- Gas assay efficiency decreases with longer duration or >1 SLPM flow
- Limited extracted gas volume constrains sensitivity
- Need for traps with more porous material

Activated Charcoal Trap

- Activated charcoal traps used for gas purification
 - G. Heusser, et al. Appl. Radiat. Isot., 52 (2000)
- Gas assays require both trapping & efficient radon release
- Developed a portable activated charcoal trap to enhance radon trapping
 - Nasim Fatemighomi et al: Nucl.Instrum.Meth.A 1076 (2025)
- Used low background Calgon OVC 4 × 8 (coconut-based)
- In-house nitric acid etching to remove ²³⁸U background
- Radon emanation: 18 ± 3 mBq/kg at room temperature

22 g trap

Radon Calibration Source for Trap testing

 A calibrating source was made using Nora Xp 5319 rubber floor tile

Fit is based on²²⁶Rasupported emanation and ²²²Rn outgassing from porous rubber tiles

Trap Efficiency Test Set-up

- N₂ flow through the source introduces radon atoms to trap
- Charcoal cooled with LN₂—alcohol mix to trap radon
- Radon released from charcoal trap by heating to 150 °C
- Released radon were extracted using the radon board

- Trap temperature tuned by LN₂ ratio in LN₂-alcohol mix
- Efficiency: The ratio of radon extracted from radon trap to radon introduced to the trap
- The trap was tested up to 5 SLPM
- The efficiency of the trap is 100% for temperatures between
 -100° C to -50° C

Charcoal versus Bronze Traps

 Unlike bronze wool trap, charcoal trap is 100% efficient after one hour of assay duration

Bronze wool data shown in slide 9...

Charcoal Trap Sensitivity and Use

- N_2 assay sensitivity $> 90 \mu Bq/m^3$
 - Bronze wool sensitivity: 3.3 mBq/m³
- Trap used to measure radon in N₂ systems, incl. SNOLAB LN₂ plant boil-off

SNOLAB LN₂ plant

SNOLAB International Dewar

Radon Counting

- Portable Lucas cells with ZnS(Ag) coating
- ZnS(Ag) scintillates with α particles \rightarrow ideal for radon detection
- Eighteen Lucas cell channels available

2" diameter PMTs and CAEN electronics

4 μs window

diameter

h11
262
108.9
59.21

Enhancing Radon Counting

- New low background Lucas cells were fabricated: 3 α /day
- R&D toward lower background ZnS(Ag)
- Exploring small low background spherical proportional counters (SPC) for β sensitivity (Dr. Pierre Gorel)

Summary and Future Work

- At SNOLAB radon assay systems used to measure radon in UPW, solid samples, and N₂ gas
- Developed a low-background radon trap to improve N₂ gas assay sensitivity
- Continuing research on radon trapping methods
 - R &D for radon measurement in noble gases
- R &D toward making low background radon counting systems

Research Students (SNOLAB/SNO+):

Yusuf Ahmed, Juliette Deloye, Peter Qin, Justin Suys, Keegan Paleshi, Adil Hussain, Jerry Lu and Ariana Pearson

Scientific Support Team:

Lina Anselmo, Steven Maguire, Sharayah Read and Deena Fabris

