A new HPGe spectrometer with µBq/kg sensitivity for sample analysis

G. Zuzel¹, A. Biondi¹, C.P. Garay²

1) Jagiellonian University, Cracow, Poland

²⁾ Canfranc Underground Laboratory, Spain

Outline

Introduction

Installation

Performance

Plans

- Introduction
- Installation of the spectrometer
- Performance of the spectrometer
- Plans
- Summary

Rysy

Introduction

Installation

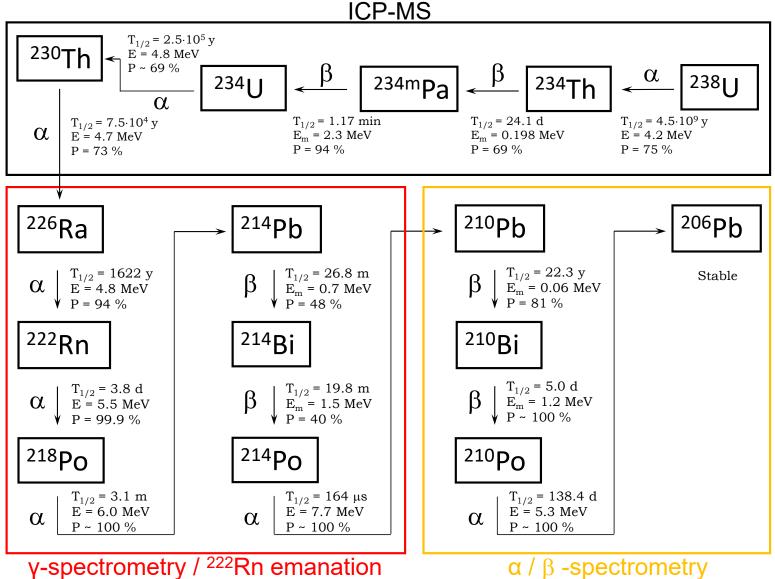
Performance

Plans

Summary

Motivation

Introduction


Installation

Performance

Plans

Summary

Motivation

Introduction

Installation

Performance

Plans

- Secular equilibrium in the ²³⁸U (²³²Th) can be broken (rather rule than an exception).
- Each sub-chain needs to be assayed separately.
- Ultra-sensitive spectrometers needed to assay ²²⁶Ra, which with ²²²Rn daughters poses in many cases the most important background source.
- Very limited screening capacities (world-wide) at the level of 1 ppt U-equivalent (~ 10 μBq/kg) → new ultra-sensitive instrument(s) needed.
- To be used for screening of the construction materials for experiments like DARKSIDE, LEGEND, NEXT, ...

GeRysy

Project financed by the Polish Ministry for Science and Higher Education

Detector delivered to LSC on 09.06.2020

Introduction

IN KRAKÓW

Installation

Performance

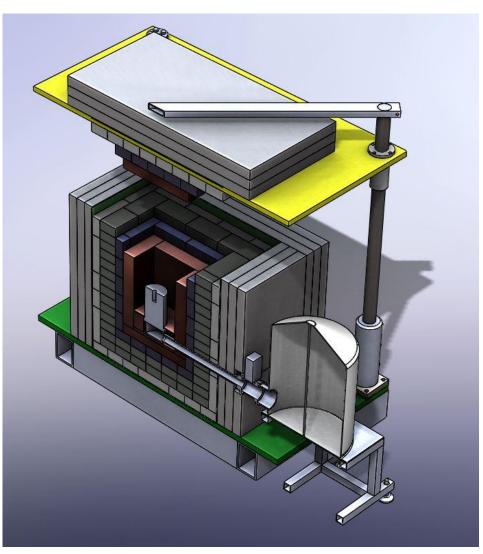
Plans

Summary

- Freshly pulled 450-cm³ HPGe crystal (~2.3 kg, ~100 % rel. efficiency).
- SAGe-well geometry (well capacity is 19.7 cm³).
- Special copper used for fabrication of the cryostat.
- Selected VFE components.
- Cosmic exposure of all materials reduced to minimum during fabrication.
- Selected gas adsorber.
- Special solder material (mix of selected tin and roman led).

Project of the Spectrometer

Introduction


Installation

Performance

Plans

Summary

Fabrication of the final shield in Kraków

- Ultra-High Purity copper (7 cm, the same material as that used for fabrication of the detector cryostat).
- UHP lead (²¹⁰Pb ~ 2 Bq/kg, 5 cm).
- High purity lead (210 Pb ~ 5 Bq/kg, 10 cm).
- Normal lead (5 cm).
- PE with 5% B (15 cm, 3 layers, 5 cm each).
- Volume of the detector chamber is 15 L.
- Volume of the well is ~ 20 cm³.

Ultra-High Purity Copper Shield

Cu for the cryostat and the most internal shield layer

Introduction

IN KRAKÓW

Installation

Performance

Plans

Summary

Isotope	Specific activity [mBq/kg]	Comments		
²³⁸ U	< 0.012	< 1 ppt U, 90 % C.L.		
²³² Th	< 0.004	< 1 ppt Th, 90 % C.L.		
²³⁵ U	< 0.069	90 % C.L.		
⁴⁰ K	< 0.14	90 % C.L.		
⁶⁰ Co	(14 ± 4) · 10 ⁻³			
²³⁴ Th	< 4.2	Upper ²³⁸ U sub-chain, 90 % C.L.		
^{234m} Pa	< 0.45	Upper ²³⁸ U sub-chain, 90 % C.L.		
²²⁸ Th	< 0.041	90 % C.L.		
²²⁸ Ra	< 0.027	90 % C.L.		
²²⁶ Ra	(29 ± 8) · 10 ⁻³	Clear disequilibrium between the		
²¹⁰ Pb	14 ± 2	middle and the bottom ²³⁸ U sub-chain		

CP-MS

HPGe

Ь

Shipping Materials to LSC

Introduction

Installation

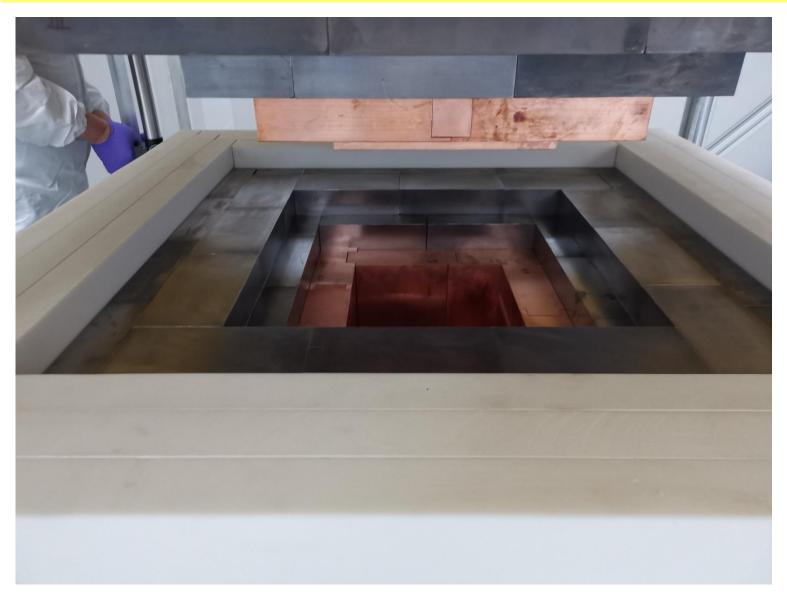
Performance

Plans

Summary

Installation at LSC (Dec. 2022)

Introduction


Installation

Performance

Plans

Summary

GeRysy at LSC

Introduction

Installation

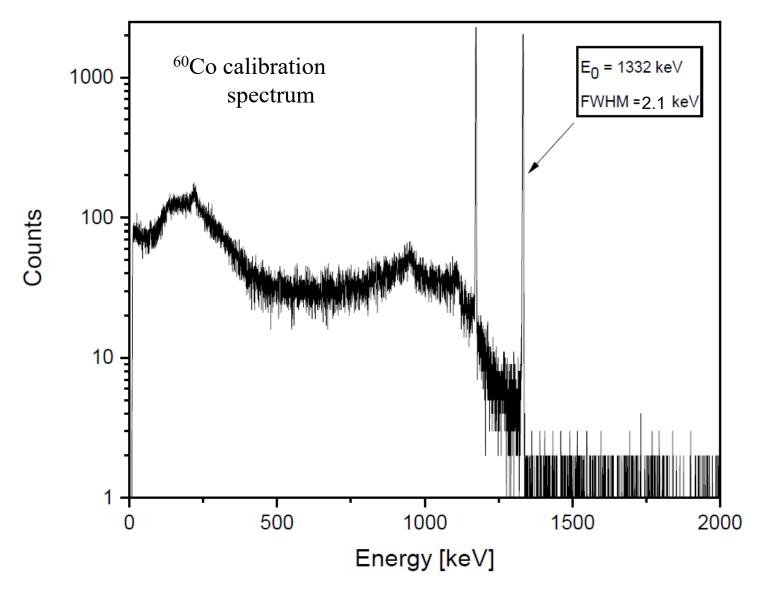
Performance

Plans

Summary

Calibration with ⁶⁰Co

Introduction

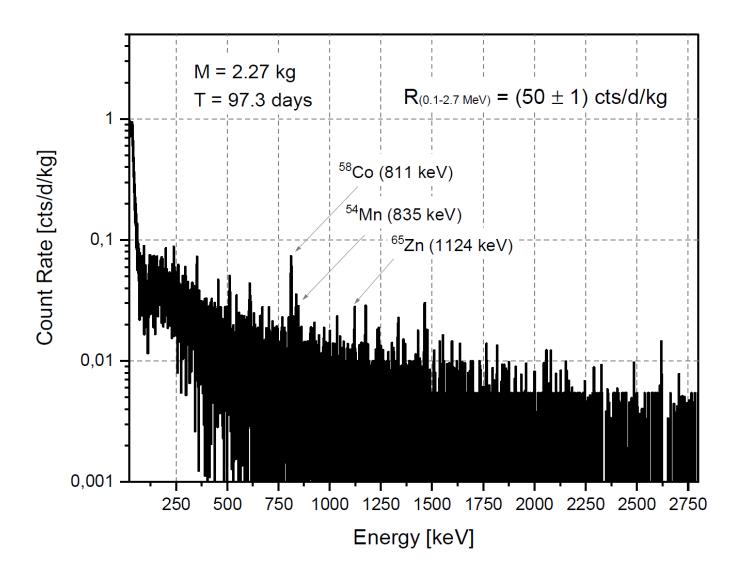

Installation

Performance

Plans

Summary

Background Measurement


Introduction

Installation

Performance

Plans

Performance of the Spectrometer

Comparison with other high sensitivity HPGe spectrometers

Introduction

Installation

Performance

Plans

Detector	M _{act} [kg]	V _{cham} [L]	Lab	Counting rates in the full energy range [cts/d/kg] and for various peaks [cts/yr/kg]						
				40 - 2700 keV	609 keV [²²⁶ Ra]	662 keV [¹³⁷ Cs]	583 keV [²²⁸ Th]	1332 keV [⁶⁰ Co]	1461 keV [⁴⁰ K]	2614 keV [²²⁸ Th]
GeRysy	2.27	15	LSC	64 ± 1	74 ± 19	< 27	2 7 ± 1 7	< 37	60 ± 16	25 ± 9
GeMPI	2.21	15	LNGS	66 ± 1	< 30	57 ± 27	< 21	35 ± 8	86 ± 12	18 ± 5
GATOR	2.20	15	LNGS	103 ± 1*	99 ± 33	50 ± 17		83 ± 17	83 ± 17	33 ± 16
GeOroel	2.31	40	LSC	142	190		182	91	66	

^{* (100 - 2700)} keV

Performance of the Spectrometer

Introduction

Installation

Performance

Plans

Summary

Estimated detection limits

Assumed measurement time = 60 d

		Detection limits: [mBq] / [mBq/kg]					
		²²⁶ Ra	²²⁸ Th	¹³⁷ Cs	⁶⁰ Co	⁴⁰ K	
Well	Low density	0.02 1.0	0.03 1.7	0.005	0.005	0.15 7.3	
	High density	0.03 0.14	0.04 0.23	0.005 0.03	0.006 0.03	0.18 1.0	
Detector chamber	Low density	0.3 0.02	0.5 0.03	0.08 0.005	0.08 0.005	2.4 0.16	
	High density	1.4 0.01	2.4 0.02	0.3 0.002	0.2	5.1 0.04	

Selected Measured Samples

Introduction

Installation

Performance

Plans

- Optical Geel (NEXT)
- PEEK (NEXT)
- Teflon Screws (NEXT)
- Stainless steel (LEGEND)
- ULTEM insulator (LEGEND)
- WLS Fibers (LEGEND)
- 3D Printed Dental Resin Sample (LEGEND)
- Ph-Br (LEGEND)
- ESR Film (DarkSide)
- SMD Resistors (DarkSide)

Plans for GeRysy 2 and GeRysy 3

Introduction

Installation

Performance

Plans

Summary

- Received funds for GeRysy 2 (Polish Ministry of Science and Higher Education).
 - GeRysy 3 funded by LSC and constructed in parallel to GeRysy 2.
- Spectrometers under construction (Mirion) customized design.
- Shielding materials, HP lead and copper, procured (high purity copper produced by the Polish KGHM company).
- Support structures of the shield delivered to LSC.
- Assembly of the spectrometers expected in 2026.
- GeRysy spectrometers installed in a clean room built by LSC in Hall C (Hall C will be dedicated to high sensitivity gamma screening).

Copper for GeRysy 2/3

Copper blocks produced by the KGHM Polska Miedź Company (from fresh and selected cathodes). Hot forging and cutting scheduled for this week.

Introduction

Installation

Performance

Plans

HPGe Clean Room at LSC

GeRysy spectrometer and the shielding support frames of GeRysy 2 and GeRysy 3

Introduction

Installation

Performance

Plans

Summary

in a dedicated clean room in Hall C of LSC.

Introduction

Installation

Performance

Plans

Summary

Conclusions

- Need for ultra-high sensitivity γ -ray spectrometers (MDA < 10 μ Bq/kg, 1 ppt U equivalent)
- GeRysy mounted in the final shield in Dec. 2022
- Sensitivity goals reached → GeRysy one of the most sensitive gamma spectrometers
- GeRysy used for regular screening of highly radiopure samples
- GeRysy 3 financed by LSC, construction in parallel to GeRysy 2
- Expected assembly of GeRysy 2 and GeRysy 3 in 2026
- All spectrometers to be operated in a clean room supplied with the Rn-free air

The Polish Ministry of Science and Higher Education is acknowledged for the support of the Construction of the GeRysy spectrometers (grants 6811/IA/SP/2018 and 2022/WK/10).

THANK YOU!

