A new HPGe spectrometer with µBq/kg sensitivity for sample analysis G. Zuzel¹, A. Biondi¹, C.P. Garay² 1) Jagiellonian University, Cracow, Poland ²⁾ Canfranc Underground Laboratory, Spain #### **Outline** Introduction Installation Performance Plans - Introduction - Installation of the spectrometer - Performance of the spectrometer - Plans - Summary # Rysy Introduction Installation Performance Plans Summary #### **Motivation** #### Introduction Installation Performance Plans Summary #### **Motivation** Introduction Installation Performance Plans - Secular equilibrium in the ²³⁸U (²³²Th) can be broken (rather rule than an exception). - Each sub-chain needs to be assayed separately. - Ultra-sensitive spectrometers needed to assay ²²⁶Ra, which with ²²²Rn daughters poses in many cases the most important background source. - Very limited screening capacities (world-wide) at the level of 1 ppt U-equivalent (~ 10 μBq/kg) → new ultra-sensitive instrument(s) needed. - To be used for screening of the construction materials for experiments like DARKSIDE, LEGEND, NEXT, ... # **GeRysy** #### Project financed by the Polish Ministry for Science and Higher Education Detector delivered to LSC on 09.06.2020 Introduction IN KRAKÓW Installation Performance Plans Summary - Freshly pulled 450-cm³ HPGe crystal (~2.3 kg, ~100 % rel. efficiency). - SAGe-well geometry (well capacity is 19.7 cm³). - Special copper used for fabrication of the cryostat. - Selected VFE components. - Cosmic exposure of all materials reduced to minimum during fabrication. - Selected gas adsorber. - Special solder material (mix of selected tin and roman led). # **Project of the Spectrometer** Introduction Installation Performance Plans Summary #### Fabrication of the final shield in Kraków - Ultra-High Purity copper (7 cm, the same material as that used for fabrication of the detector cryostat). - UHP lead (²¹⁰Pb ~ 2 Bq/kg, 5 cm). - High purity lead (210 Pb ~ 5 Bq/kg, 10 cm). - Normal lead (5 cm). - PE with 5% B (15 cm, 3 layers, 5 cm each). - Volume of the detector chamber is 15 L. - Volume of the well is ~ 20 cm³. # **Ultra-High Purity Copper Shield** Cu for the cryostat and the most internal shield layer Introduction IN KRAKÓW Installation Performance Plans Summary | Isotope | Specific activity
[mBq/kg] | Comments | | | |--------------------|-------------------------------|--|--|--| | ²³⁸ U | < 0.012 | < 1 ppt U, 90 % C.L. | | | | ²³² Th | < 0.004 | < 1 ppt Th, 90 % C.L. | | | | ²³⁵ U | < 0.069 | 90 % C.L. | | | | ⁴⁰ K | < 0.14 | 90 % C.L. | | | | ⁶⁰ Co | (14 ± 4) · 10 ⁻³ | | | | | ²³⁴ Th | < 4.2 | Upper ²³⁸ U sub-chain, 90 % C.L. | | | | ^{234m} Pa | < 0.45 | Upper ²³⁸ U sub-chain, 90 % C.L. | | | | ²²⁸ Th | < 0.041 | 90 % C.L. | | | | ²²⁸ Ra | < 0.027 | 90 % C.L. | | | | ²²⁶ Ra | (29 ± 8) · 10 ⁻³ | Clear disequilibrium between the | | | | ²¹⁰ Pb | 14 ± 2 | middle and the bottom ²³⁸ U sub-chain | | | CP-MS HPGe Ь # **Shipping Materials to LSC** Introduction Installation Performance Plans Summary # Installation at LSC (Dec. 2022) Introduction Installation Performance Plans Summary # **GeRysy at LSC** Introduction Installation Performance Plans Summary #### Calibration with ⁶⁰Co Introduction Installation Performance Plans Summary #### **Background Measurement** Introduction Installation Performance Plans #### Performance of the Spectrometer Comparison with other high sensitivity HPGe spectrometers Introduction Installation Performance Plans | Detector | M _{act}
[kg] | V _{cham}
[L] | Lab | Counting rates in the full energy range [cts/d/kg]
and for various peaks [cts/yr/kg] | | | | | | | |----------|--------------------------|--------------------------|------|---|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|-------------------------------------| | | | | | 40 - 2700
keV | 609
keV
[²²⁶ Ra] | 662
keV
[¹³⁷ Cs] | 583
keV
[²²⁸ Th] | 1332
keV
[⁶⁰ Co] | 1461
keV
[⁴⁰ K] | 2614
keV
[²²⁸ Th] | | GeRysy | 2.27 | 15 | LSC | 64 ± 1 | 74 ± 19 | < 27 | 2 7 ± 1 7 | < 37 | 60 ± 16 | 25 ± 9 | | GeMPI | 2.21 | 15 | LNGS | 66 ± 1 | < 30 | 57 ± 27 | < 21 | 35 ± 8 | 86 ± 12 | 18 ± 5 | | GATOR | 2.20 | 15 | LNGS | 103 ± 1* | 99 ± 33 | 50 ± 17 | | 83 ± 17 | 83 ± 17 | 33 ± 16 | | GeOroel | 2.31 | 40 | LSC | 142 | 190 | | 182 | 91 | 66 | | ^{* (100 - 2700)} keV ### Performance of the Spectrometer Introduction Installation Performance Plans Summary #### Estimated detection limits Assumed measurement time = 60 d | | | Detection limits: [mBq] / [mBq/kg] | | | | | | |-------------------------|-----------------|------------------------------------|-------------------|-------------------|------------------|-----------------|--| | | | ²²⁶ Ra | ²²⁸ Th | ¹³⁷ Cs | ⁶⁰ Co | ⁴⁰ K | | | Well | Low
density | 0.02
1.0 | 0.03
1.7 | 0.005 | 0.005 | 0.15
7.3 | | | | High
density | 0.03
0.14 | 0.04
0.23 | 0.005
0.03 | 0.006
0.03 | 0.18
1.0 | | | Detector chamber | Low
density | 0.3
0.02 | 0.5
0.03 | 0.08
0.005 | 0.08
0.005 | 2.4
0.16 | | | | High
density | 1.4
0.01 | 2.4
0.02 | 0.3
0.002 | 0.2 | 5.1
0.04 | | #### Selected Measured Samples Introduction Installation Performance Plans - Optical Geel (NEXT) - PEEK (NEXT) - Teflon Screws (NEXT) - Stainless steel (LEGEND) - ULTEM insulator (LEGEND) - WLS Fibers (LEGEND) - 3D Printed Dental Resin Sample (LEGEND) - Ph-Br (LEGEND) - ESR Film (DarkSide) - SMD Resistors (DarkSide) # Plans for GeRysy 2 and GeRysy 3 Introduction Installation Performance Plans Summary - Received funds for GeRysy 2 (Polish Ministry of Science and Higher Education). - GeRysy 3 funded by LSC and constructed in parallel to GeRysy 2. - Spectrometers under construction (Mirion) customized design. - Shielding materials, HP lead and copper, procured (high purity copper produced by the Polish KGHM company). - Support structures of the shield delivered to LSC. - Assembly of the spectrometers expected in 2026. - GeRysy spectrometers installed in a clean room built by LSC in Hall C (Hall C will be dedicated to high sensitivity gamma screening). # Copper for GeRysy 2/3 Copper blocks produced by the KGHM Polska Miedź Company (from fresh and selected cathodes). Hot forging and cutting scheduled for this week. Introduction Installation Performance Plans #### **HPGe Clean Room at LSC** GeRysy spectrometer and the shielding support frames of GeRysy 2 and GeRysy 3 Introduction Installation Performance Plans Summary in a dedicated clean room in Hall C of LSC. Introduction **Installation** Performance Plans Summary #### **Conclusions** - Need for ultra-high sensitivity γ -ray spectrometers (MDA < 10 μ Bq/kg, 1 ppt U equivalent) - GeRysy mounted in the final shield in Dec. 2022 - Sensitivity goals reached → GeRysy one of the most sensitive gamma spectrometers - GeRysy used for regular screening of highly radiopure samples - GeRysy 3 financed by LSC, construction in parallel to GeRysy 2 - Expected assembly of GeRysy 2 and GeRysy 3 in 2026 - All spectrometers to be operated in a clean room supplied with the Rn-free air The Polish Ministry of Science and Higher Education is acknowledged for the support of the Construction of the GeRysy spectrometers (grants 6811/IA/SP/2018 and 2022/WK/10). # THANK YOU!