Contribution ID: 346 Type: Oral

Application of the bateman equation to analyze disequilibrium in the 232 Th and 238 U chains in low-background detector materials

Tuesday 26 August 2025 14:40 (20 minutes)

ABSTRACT

In rare-event search experiments such as AMoRE and COSINE, estimating background radioactivity levels and identifying background sources are crucial for background reduction. Typically, isotopes in the $^{238}\mathrm{U}$ and $^{232}\mathrm{Th}$ decay chains with relatively short half-lives are grouped together, and secular equilibrium is assumed during background measurements and estimations. During our material screening process, we observed that the $^{228}\mathrm{Ac}^{-228}\mathrm{Th}$, and $^{238}\mathrm{U}^{-226}\mathrm{Ra}$ secular equilibrium was disrupted in several candidate materials. These measurements were conducted using a single HPGe detector at Y2L before 2023, and at Yemilab from 2024 onward.

In one notable case, an aluminum sample showed a significant increase in 226 Ra activity—from below the detection limit (22 mBq/kg) in 2021 to 893 ± 48 mBq/kg in 2025—despite the fact that there was no treatment or exposure that could have lead to radium contamination of the sample. Interestingly, the 234 Th activity remained nearly constant at around 60 Bq/kg, indicating that the 238 U parent activity did not change. Moreover, the 228 Th/ 228 Ac activity ratio decreased significantly over time. In 2021, the activity values were 228 Ac = 155 ± 19 mBq/kg and 228 Th = 4030 ± 206 mBq/kg, resulting in a ratio of approximately 27. By 2025, the measured values had shifted to 228 Ac = 421 ± 30 mBq/kg and 228 Th = 1273 ± 67 mBq/kg, corresponding to a reduced ratio of around 3.

This behavior suggests that prior radium purification influenced the relative amounts of isotopes in both the 238 U and 232 Th decay chains, resulting in a significant disruption of secular equilibrium.

A clear correlation was observed between the buildup of 226 Ra and the imbalance in the 228 Th/ 228 Ac activity ratio, highlighting the interconnected nature of these decay series.

These findings underscore the need for time-dependent modeling using the Bateman equation, which can account for such disequilibrium and provide accurate predictions of future activity levels.

By applying this method, we aim to predict the time-dependent activity of long-lived isotopes and enhance the accuracy of background level estimation in upcoming rare-event search experiments, including AMoRE-II and COSINE.

Collaboration you are representing

AMoRE, COSINE

Author: LEE, Eunkyung (Center for Underground Physics, IBS)

Co-authors: KIM, Yeongduk (Institute for Basic Science); Dr YOON, Youngsoo (KRISS)

Presenter: LEE, Eunkyung (Center for Underground Physics, IBS)

Session Classification: Underground Laboratories

Track Classification: Underground Laboratories