XICHANG SICHUAN, CHINA

2025.8.24 - 8.30

Diagnosing the origin of dense circumstellar material in a multi-energy neutrino astronomical approach

UNIVERSITY

Yosuke ASHIDA (Tohoku U) & Ryo SAWADA (ICRR, U Tokyo)

Based on the work published in The Astrophysical Journal 982, 93 (2025)

1. Introduction

- □ Origin of dense circumstellar material (CSM)??
 - Core convection
 - Binary star process
 - Pre-explosion activity
- Mass loss may be caused by a weaker gravitational binding due to pre-SN neutrino emission?
 - Thermal MeV neutrinos (pre-SN activity); e.g., C. Kato et al. ApJ 848, 48 (2017)
 - Non-thermal high-energy neutrinos (ejecta-CSM interactions); e.g., K. Murase PRD 97, 081301 (2018)
- □ Detecting multi-energy neutrinos could solve

3. Demonstration

- ☐ **JUNO**: Based on J Phys. G 43, 030401 (2016); **1.8~4.0 MeV**
 - Detection channel: Inverse Beta Decay (IBD)
 - Background: reactor v, geo v, spallation, etc (~18 day⁻¹ in total)
- □ IceCube: Based on HESE effective area; 10¹~10³ TeV
 - Detection channel: Deep Inelastic scattering (DIS)
 - Background: atmospheric v (HAKKM2014), astrophysical v (ESTES)

(a–1) pre-SN ν , 300 pc, JUNO

background event

2. Model

© Higgstan

☐ Mass loss is assumed to originate from the neutrino release, resulting in CSM production. Core mass-loss rate is expressed as,

•
$$\dot{M}_{\text{core}} = \frac{L_{\text{pre-}\nu}}{c^2} = 6.8 \times 10^{-3} \left(\frac{L_{\text{pre-}\nu}}{10^{11} L_{\odot}}\right) M_{\odot} \text{ yr}^{-1}$$

- □ CSM is reconstructed from pre-SN neutrinos. Mass-loss rate from the stellar surface is,
 - $\dot{M}_{\rm sur}(t) \approx \dot{M}_{\rm wind} + \beta \cdot \frac{L_{\rm pre-\nu}(t)}{c^2} \propto \rho_{\rm csm}(r,t)$
 - $\dot{M}_{\rm wind} = 10^{-6} M_{\odot} \, \rm yr^{-1}$ (steady-state wind mass-loss rate) $\ll \beta \dot{M}_{\rm core}$
 - β : mass-loss efficiency (considered 0.01~1.00)
- Ejecta-CSM interactions will produce high-energy neutrinos.
 - Roughly, $\rho_{\rm csm}(r,t) \propto \frac{L_{\rm pre-\nu}(t_{\rm csm})}{r^2}$
 - $t_{\rm csm} = t \frac{r R_{\rm sur}}{v_{\rm csm}}$, where $v_{\rm csm} = v_{\rm esc} = \sqrt{\frac{2GM_{\rm sur}}{R_{\rm sur}}}$

- When CSM is *shallow*, the collisionless shock wave is formed right after shock wave leaves a star.
- When CSM is *dense*, timescale of the collisionless shock wave formation follows the photon escape time.

4. Conclusion & Discussion

- The proposed idea is applicable for the range up to ~500 pc, which could be extended to O(1) kpc.
 - Analysis energy window in JUNO
 - Background reduction (especially reactor neutrinos...)
 - Combination with other detectors (e.g., SK-Gd, Hyper-K).
- □ Candidate Wolf-Rayet stars
- A few within ~1 kpc; the closest is γ^2 Velorum (WR 11) at ~340 pc.
- Increased to >10 within a few kpc.
- Multi-energy neutrino astronomy era is now explored!

