

## Background Modeling of AMoRE-I



B. Bhandari<sup>1,2</sup>, on behalf of AMoRE collaboration <sup>1</sup>Sejong University, <sup>2</sup>Center for Underground Physics(CUP), Institute for Basic Science(IBS), Daejeon, Korea

To aid the search for neutrinoless double-beta decay of 100Mo (Q = 3.034 MeV) in AMoRE, a background simulation of AMoRE-I is performed using Geant4. It aims to estimate contributions from major background sources and to reproduce the observed experimental spectrum for background modeling.

- 18 crystals with a total mass of 6.194 kg: 13 Calcium Molybdate (CMO) and 5 Lithium Molybdate (LMO).
- Single hit events: Events depositing energy in single crystal.
- Smearing was applied using detector resolution of AMoRE-I data.
- Events within 30 minutes of <sup>212</sup>Bi alpha decay (6207±50 keV) can be classified as alpha-tagged and rejected with 98% efficiency.



Mass:  $3.76 \times 10^5 \text{ kg}$ 

<sup>40</sup>K: 1418 Bq/kg

<sup>232</sup>Th: 52 Bq/kg

<sup>238</sup>U: 64.2 Bq/kg

Energy[MeV]

Radius: 5 m





- **Background Source** Event rate [ckky] Background Source Event rate [ckky]  $9.42 \times 10^{-3}$ Internal CMO  $0.537 \times 10^{-4}$ Air Radon (RRSON)  $32.01 \times 10^{-3}$ Internal LMO  $0.336 \times 10^{-4}$ Air Radon (RRSOFF)  $0.80 \times 10^{-3}$  $7.86 \times 10^{-4}$ Near Crystal components Aluminum plate  $5.124 \times 10^{-3}$  $4.983 \times 10^{-3}$ Neutron 2vbbEvents on Extended ROI [2.8–3.2 MeV].
- Simulation matches data overall, with several discrepancies under
- Surface, Alpha backgrounds, and Multiple-hit studies are ongoing.
- Radon dominates near ROI; Data-MC modeling is in Progress.

study.