Contribution ID: 321 Type: Poster

Laser isotope separation of 48Ca for the study of neutrinoless double beta decay and the CANDLES project

Wednesday 27 August 2025 19:40 (20 minutes)

Neutrinoless double beta decay is a powerful method for verifying Majorana neutrinos. 48 Ca is one of the best candidates because it has the largest Q-value of decay (4.27 MeV) and is the target nucleus of the CANDLES project. Although a large number of target nuclei is essential to search for the decay with higher sensitivity, there is no established mass production method for enriched 48 Ca isotopes. Laser isotope separation (LIS) using the deflection method offers the possibility to overcome this difficulty. We have completed proof-of-principle experiments and are developing a prototype system for mass production of 48 Ca by LIS. It consists of 1) a natural calcium atomic beam, 2) a laser for deflection, and 3) a enriched/depleted calcium recovery system, with 1) and 3) installed in a vacuum chamber. For long-term stable production, the following performance is being developed, 1) A well-collimated, high-efficient and intense atomic beam, 2) High intensity laser with narrow line width compared to the natural width of the transition, and 3) A system to efficiently recover enriched and depleted calcium, respectively.

The current status of these developments and an overview of the CANDLES project will be presented.

Collaboration you are representing

CANDLES

Author: Prof. OGAWA, Izumi (University of Fukui)Presenter: Prof. OGAWA, Izumi (University of Fukui)

Session Classification: Poster session

Track Classification: Neutrino Physics and Astrophysics