Background rejection by Pulse Shape Discrimination in the LEGEND experiment

Raoul Cesarano raoul.cesarano@gssi.it

On behalf of LEGEND, Large Enriched
Germanium Experiment for Neutrinoless ββ Dec

The LEGEND collaboration is searching for neutrinoless double beta $(0v\beta\beta)$ decay by operating high-purity germanium detectors (HPGe) enriched in ⁷⁶Ge in a low-background liquid argon environment. Building on key technological innovations from Gerda and the Majorana Demonstrator, LEGEND-200 has performed a first $0v\beta\beta$ decay search based on 61 kg yr of data [1].

Detectors

- Geometries: Coaxial, BEGe, PPC, Inverted Coaxial (IC)
- Backgrounds: Surface α/β particles, bulk Compton scattering
- Signal (0vββ): Bulk, single-site events (SSEs)
- Pulse Shape Discrimination (PSD): Rejects multi-site events (MSEs) and surface backgrounds via signal profiles, preserving high signal efficiency

A/E Classifier

In **point-contact** detectors, the A/E ratio (maximum current amplitude over energy) is used to classify backgrounds: MSEs and n⁺ surface events have wider pulses and lower A/E, while p⁺ surface events show higher A/E.

LQ Classifier

Late-charge (LQ) is the normalized area above the last 20% of the charge signal, used to tag slow surface events. The cut is used in detectors with large, thin passivated surfaces in place of high A/E.

Coax

In Coaxial detectors, we apply an Artificial Neural Network (ANN) trained on ²⁰⁸TI DEP and ²¹²Bi FEP to distinguish SSEs and MSEs, then cut on rise-time to reject surface alphas.

Calibration

- PSD cuts are calibrated using weekly ²²⁸Th gamma source runs
- A/E and LQ parameters are corrected for drift time and energy dependence to have normalized distributions centered at 0
- 208TI DEP at 1593 keV: SSEs proxy (pair production electrons deposit locally while γ rays escape)
- ²¹²Bi FEP at 1621 keV: MSEs reference (close in energy to DEP to avoid bias)
- Multi-site rejection performance is tested on SEP, FEP, and Compton continuum events

Cut thresholds:

- Low A/E: 90% DEP acceptance
- High A/E: 3 sigma → >96% DEP acceptance
- LQ: 3 sigma → >98% DEP acceptance

PSD at $Q_{\beta\beta}$ is corrected by several systematic effects as: energy dependence (using 60 Co source), spatial distribution (using $2v\beta\beta$), time variability.

Thanks to the powerful PSD capabilities and a strong anti-correlation with Liquid Argon anticoincidence, LEGEND observed a background index* of:

0. $5^{+0.3}_{-0.2}$ cts / (keV ton yr) in the 0vββ decay signal region [1]

*Only point contact IC

	BEGe	PPC	Coax	IC
Exposure (kg yr)	10,9	4,2 kg yr	7,8 kg yr	38,2 kg yr
PSD at Q _{ββ} (%)	81.1 ± 3.9	85.0 ± 4.5	76.0 ± 5.7	84.3 ± 3.0

