First observation of reactor antineutrinos by coherent scattering with CONUS+

Manfred Lindner

on behalf of the CONUS collaboration

The XIX International Conference on Topics in Astroparticle and Underground Physics

TAUP2025

Aug 24 – 30, 2025, Xichang, China

The CONUS Collaboration

- N. Ackermann, H. Bonet, A. Bonhomme,
- C. Buck, J. Hakenmüller, J. Hempfling,
- G. Heusser, M. Lindner, W. Maneschg,
- K. Ni, T. Rink, E. Sanchez Garcia,
- H. Strecker

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

K. Fülber, R. Wink

PreussenElektra GmbH, Kernkraftwerk Brokdorf (KBR), Germany

M. Rank, I. Stalder, J. Woenckhaus Kernkraftwerk Leibstadt AG (KKL), Switzerland

- 1) Very intense anti-neutrino flux at a commercial power reactor:
- → CONUS experiment @Brokdorf: KBR
- → CONUS+ @Leibstadt (CH): KKL
- 2) Sophisticated shield against all sort of backgrounds at a reactor site
- 3) Very low threshold Germanium detectors

Experimental Sites

CONUS 2018 – 2022 @Brokdorf (KBR)

3.9 GW_{th} reactor

distance: $17m \rightarrow 2*10^{13} \text{ v/cm}^2/\text{s}$

→ Eur.Phys.J.C 79 (2019) 8, 699

→ Eur.Phys.J.C 83 (2023) 3

final shutdown in 2021 → more off data final result: factor 1.6 (90%CL) away from SM → Phys.Rev.Lett. 133 (2024) 25, 251802

significant detector improvements

→ CONUS+

Since 2023 @Leibstadt, CH (KKL)

3.6 GW_{th} reactor

CONUS+ @20.7m \rightarrow 1.45*10¹³ v/cm²/s

different overburden: 7-8 mwe → better veto

outage: drywell above detector +3.8cm steel

typical reactor operation: 11 months per year ON, 1 month OFF for maintenance

Timeline of CONUS+

- dismantling
- transport
- improvements
- installation
- data taking
- analysis

The CONUS+ Setup

Shield for background suppression:

- stainless steel cage → safety (earthquakes)
- optimized shield with active and passive layers:
 - outer and inner μ-veto layers
 - ←→ higher muon flux @KKL
 - lead for gamma suppression
 - PE (and borated 10B PE) layers $\leftarrow \rightarrow$ neutrons
- all materials carefully selected and screened
- flushing with radon-free air \rightarrow remove ²²²Rn
 - → background reduction by 4 orders of magnitude
- 10 tons total mass

~1.2m

low background conditions like in UG labs

→ ``virtual depth"

CONUS: Eur.Phys.J. C83 (2023) 3, 195 CONUS+: Eur.Phys.J. C85 (2025) 4, 465

Improved CONUS+ Detectors

point-contact HPGe detectors

- point-contact HPGe detectors
 → diode in reverse direction, ~kV voltages
- 1kg crystals: C2,C3,C4,C5 plus C1@MPIK
 → active mass in CONUS(+): 3.74 kg
- electrical PT cryocoolers (LN not allowed)
- long cryostat arms
- all components with very low background
- intensive R&D cooperation with producer
- ASIC based electronics
 - → improved low E trigger efficiency
- reduced point contact size & bonding technology
 - → reduced electronic noise
 - \rightarrow lower threshold: $\sim 250 \rightarrow 160 \text{ eV}$
 - → improved energy resolution
- pulse shape discrimination (PSD ←→ slow pulses)

Eur. Phys J. C81, 267 (2021)

Eur.Phys.J. C84, 1265 (2024)

Trigger Efficiency, Resolution, Threshold

trigger efficiency = "probability" of signal detection

→ improved CAEN DAQ system

	C4 before refurbishment	C4 after refurbishment
100 % down to	~ 500 eV _{ee}	~ 150 eV _{ee}
50 % at	~ 300 eV _{ee}	~ 85 eV _{ee}
20 % at	~ 200 eV _{ee}	~ 65 eV _{ee}

Detector	Pulser resolution after refurbishment (FWHM) [eV _{ee}]	Pulser resolution before refurbishment (FWHM)[eV _{ee}]	Threshold after refurbishment [eV _{ee}]	Threshold before refurbishment $[eV_{ee}]$
C5	48 +- 1	-	170	-
C2	47 +- 1	73 +- 1	180	210
C3	47 +- 1	74 +- 1	160	230
C4	47 +- 1	77 +- 1	-	210

Quenching

Recoil energy deposition in Ge detector:

- partially converted into ionization
- drift to point contact, amplification, ...

quenching factor:
(energy dependent)

$$q = \frac{E_{ion}}{E_{rec}} = \frac{k g(\varepsilon)}{1 + k g(\varepsilon)}$$

$$g(\epsilon) = 3*\epsilon^{0.15} + 0.7*\epsilon^{0.6} + \epsilon$$
; $\epsilon = 11.5*Z^{-7/3}$ E_{rec}

before: large uncertainties for E_{rec} < few keV

→ dedicated measurement: CONUS + PTB

monoenergetic neutron beam:

- recoil angle \rightarrow energy transfer E_{rec}
- signal in Ge detector: E_{ion}
- → significantly improved measurement
- → consistent with Lindard theory (as it should)
- \rightarrow k = 0.162 \pm 0.004

Eur.Phys.J.C 82 (2022) 9, 815

Characterization of Backgrounds

@KKL before the experiment was moved:

- Gamma measurement with HPGe detector (CONRAD)
- Neutron measurement with Bonner sphere array
- Environmental parameters:
 - radon level
 - temperature
 - vibrations with piezoelectric sensors
- Cosmic muons with custom liquid scintillator detector
- Wipe tests to measure surface contamination

Eur.Phys.J. C85 (2025) 4, 465

in parallel (at MPIK, at company, transport,...):

mitigate backgrounds in detector

- material screening of all used components
- avoid cosmogenic activation (underground storage)
- minimize transportation times

• ...

Backgrounds: Results @KKL

Gammas (with CONRAD, unshielded in ZA28R027)

Muons

Muon rate in CONUS+ room: (107 +- 3) counts/s/ m^2

→ factor 1.9 reduction compared to outside

→ 7.4 m w.e. overburden

Neutrons

Energy region	$\phi (cm^{-2} (GW h)^{-1})$
Thermal	172.1 +- 16.3
intermediate	91.6 +- 6.3
Fast + cascade	1.0 +- 0.8
Total	264.7 +- 13.2

Cosmic Neutrons

Radon:

commercial device ~150 Bq/m³

all backgrounds well understood Eur.Phys.J.C 85 (2025) 4, 465

Background Model

Full decomposition of backgrounds using:

- material screening
- Monte Carlo simulation
- detector data

Relevant components:

- cosmogenic: muons and neutrons (from CR)
- natural radioactivity (external and internal)
- artificial components in reactor environment neutrons, surface contaminations, inert gases (Xe, Kr, H³)

Muons:

flux inside room: $(107\pm3) s^{-1}m^{-2}$

→ consistent with expectation from overburden muon veto efficiency: 99%

at low E: μ -induced signals from μ 's not crossing veto

→ slowly decreasing efficiency: 97% < 400 eV)

Cosmogenic Neutrons

neutrons produced by cosmic-rays:

flux varies with magnetic latitude, elevation, the sun's magnetic activity cycle, nearby materials, humidity/moisture

→ constant conditions during data taking

initial cosmic neutron spectrum: 0.014 neutrons/s/cm²

cosmic neutrons inside room 0.9 ± 0.2 neutrons/d/cm²

 $21.6 \pm 3.1 \text{ cts/d/kg in } [0.4-1 \text{ keV}_{ee}]$ (50.3 ± 7.2% of C5 background)

Radon inside the Detector

Radon:

shield flushed with aged air

Stability plots show:

- Radon greatly reduced by
- but lines still visible
- → impact in [100,400] keV
- → small in ROI

Full Background Model versus Data

- perfect agreement of data with expectation
- 0 400 eV blinded

Full Background model (C5, [400 - 1000] eV_{ee})

Component	Contribution ON [counts/d/kg]	Contribution OFF [counts/d/kg]
Muons	15.2 +- 0.3	15.1 +- 0.3
Neutrons	21.6 +- 3.1	17.7 +- 2.5
Muon-induced neutrons in overburden	2.2 +- 0.1	1.8 +- 0.1
Cu cosmogenics	0.1 +- 0.05	0.1 – 0.05
Pb210 in cryostat	< 0.1	< 0.1
Pb210 in shield	0.1 +- 0.02	0.1 +- 0.02
Ge cosmogenics	0.2 +- 0.02	0.2 +- 0.02
Metastable Ge states	0.1 +- 0.01	0.1 +- 0.01
Radon	1.9 +- 0.1	0.3 +- 0.1
Kr85	< 0.1	< 0.1
H3	1.3 +- 0.2	0.5 +- 0.2
Xe135	0.1 +- 0.01	< 0.1
Total	42.9 +- 3.1 (DATA = 43.5 +- 1.1)	35.8 +- 2.5 (DATA = 33.4 +- 1.8)

Signal Prediction

Detector	Threshold [eV _{ee}]	Predictetd CEvNS counts
C5	170	116 (+20/-18)
C2	180	96 (+16/-14)
C3	160	135 (+23/-20)
COMBINED	-	345 (+34/-30)

lower detector thresholds

→ increased impact of lower energy neutrinos

Excess Events (below 350 eV_{ee})

- difference between 119 days of reactor on to the background model scaled to the total detector mass
- vertical lines indicate the energy thresholds of the three detectors used in the analysis

No Excess above 350 eV_{ee}

agreement between data and background model above the signal region from 350–800 eV

spread of the data points around the model

Result: Number of Events

Detector	Threshold [eV _{ee}]	CEvNS counts fit	SM prediction
C5	170	117 +- 57	116 +- 20
C2	180	69 +- 47	96 +- 16
C3	160	186 +- 66	135 +- 23
Combined		395 ± 106	347 ± 34

- CEvNS counts from the combined fit = 395 ± 106 (additional systematics included)
- Rejection of null hypothesis: 3.7σ

first detection of CE_vNS with reactor antineutrinos!

→ arXiv: 2501.05206

→ Nature 643, 1229 (2025)

nature

Explore content > About the journal > Publish with us >

nature > articles > article

Article Open access | Published: 30 July 2025

Direct observation of coherent elastic antineutrinonucleus scattering

N. Ackermann, H. Bonet, A. Bonhomme, C. Buck ☑, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, M. Lindner, W. Maneschg, K. Ni, M. Rank, T. Rink, E. Sánchez García, I. Stalder, H. Strecker, R. Wink & J. Woenckhaus

Comparison to Other CEvNS Results

Experiment	Target	Source	Neutrino energy	Flux [cm ⁻² s ⁻¹]	Data [counts]	Data/ SM prediction	Significance of null hypothesis rejection
COHERENT	Cs	Accelerator	10 – 50 MeV	5 * 10 ⁷	306^{+20}_{-20}	$0.90^{+0.14}_{-0.14}$	11.6 σ
COHERENT	Ar	Accelerator	10 – 50 MeV	5 * 10 ⁷	140^{+40}_{-40}	$1.22^{+0.49}_{-0.49}$	3.5σ
COHERENT	Ge	Accelerator	10 – 50 MeV	5 * 10 ⁷	21 ⁺⁷ ₋₆	$0.59^{+0.26}_{-0.24}$	3.9σ
XENONnT	Xe	Sun (⁸ B)	< 15 MeV	$5 * 10^6$	11^{+4}_{-2}	$0.90^{+0.65}_{-0.67}$	2.73σ
PandaX-4T	Xe	Sun (⁸ B)	< 15 MeV	5 * 10 ⁶	4+1	$1.25^{+0.69}_{-0.69}$	2.64σ
CONUS+	Ge	Reactor	< 10 MeV	1.5 * 10 ¹³	395^{+106}_{-106}	1.14^{+036}_{-036}	3.7σ

CONUS+

- → has detected the lowest energy neutrinos (down to 4 MeV) via the CEvNS channel
- → accumulated the highest number of CEvNS counts in one single isotope (low threshold + high flux)

Outlook

- 3 new 2.4 kg PPC Ge detectors: C9, C7 and C6 Crystal mass: $3 \text{ kg} \rightarrow 1 + 3*2.4 = 8.2 \text{ kg}$
- better cryocooler stability with new coolant
- slight background improvement in new detectors
- thresholds at least as low as in previous detectors
 - \rightarrow installed in 11/2024
- commissioning → data taking on-going
- → expect significantly improved results O(1yr)

Summary

With:

- 119 days of reactor ON and 19 days of reactor OFF data in Run 1
- a sophisticated and well tested background model
- **CONUS**+ observes CEvNS events consistent with the standard model prediction
- Lindhard theory (verified also by dedicated quenching measurement)
- detailed knowledge about neutrino flux, fissile fuel burning and thermal power
- not due to a non-considered reactor-correlated background component

→ Null hypothesis rejected at 3.7σ

- First observation of CEvNS with reactor anti-neutrinos in the fully coherent regime
- Very interesting implications: BSM physics, sources, nuclear physics, ...
- Run 2 is ongoing since end of 2024, $3 \rightarrow 8.2$ kg, further improvements \rightarrow stay tuned!
- Motivates upscaling based on CONUS+ technology (+improvements)
- Combined with other experiments → precision CEvNS physics

→ Excellent potential (within years – not decades...)

BACKUP

Background Model versus On and Off-Data

Run 1 result: predominantly from On-data versus very well understood background Upcoming runs: Combination of On-Off and On-background

Prospects: CONUS100

technology for moderate size high statistics experiments established:

- O(100kg) possible
- ~100 eV threshold feasible

ML, T. Rink, M. Sen, JHEP 08 (2024) 171

 \rightarrow 500.000 events in 5y

+ other technologies @reactors

in addition:

- upgrades of COHERENT
- next generation LXe dark matter (XLZD, ...)

→ precision CEvNS physics within a few years...

What can be learned from CEvNS?

aim at the most precise measurement

nuclear uncertainties

 \rightarrow lowest q² where F(q²)=1 or combinations

More precision requires improved description:

- $F(Q^2) \rightarrow F_N(Q^2)$ and $F_Z(Q^2)$
- more SM corrections and quantum effects e.g. $\sin^2(\theta_W)$
- QFT description: advanced coherence conditions, scattering on N, Z or on quarks, ...
- effects of BSM physics: NSI (heavy), LET (light), oscillation effects, ...

Inverted logic: If only SM \rightarrow CEvNS can be used to:

- test sources: the Sun, reactors, π -decay@rest@beams, ...
- unique tests of nuclear physics
- technological applications: reactor monitoring, safe-guarding,...

→ extremely rich and promising field within a few years

Some Studies based on CONUS+ Result

M. Alpízar-Venegas et al., arXiv:2501.10355

A. Chattaraj, et al., arXiv:2501.12441

low E Weinberg angle 0.260 0.255 $\sin^2 \theta_{\rm W}$ PnX+XnT (CEvNS) 0.250 $\sin^2 \theta_W |_{\overline{MS}}$ $\sin^2 heta_{ m W}$ $\mu (10^{-2} \, \text{GeV})$ $\sin^2 \theta_W |_{\overline{MS}}$ 0.235 10^{-1} 10^{-2}

μ (GeV)

