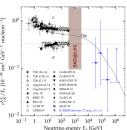
Neutrino Physics with the SND@LHC Experiment

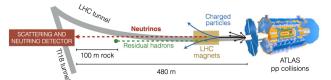
Onur Durhan on behalf of SND@LHC collaboration

Atilim University, Middle East Technical University

XIX INTERNATIONAL CONFERENCE
ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS
24-30 August 2025
XICHANG, SICHUAN, CHINA

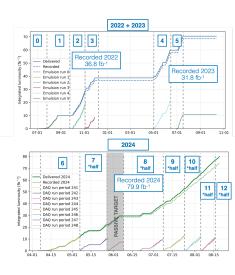
Neutrinos at LHC




- The physics potential of neutrino experiments at the LHC was acknowledged in the early 1980s.
- Large neutrino fluxes in forward region from pp collisions.
- The highest energy human-made neutrinos.
- High neutrino energy and thus larger interaction cross section $(\sigma_{\nu} \propto E_{\nu})$
- All three neutrino flavours can be observed at the LHC with a small-scale experiment
- ullet Unexplored energy domain $E_{
 u} \in [10^2, 10^3] \; {
 m GeV}$
- **SND@LHC**: off-axis, $7.2 < \eta < 8.4$

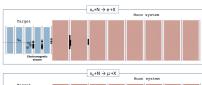
Further studies on the physics potential of an experiment using LHC neutrinos

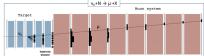
SND@LHC



Data Taking and Event Reconstruction

- Recorded lumi of pp collisions in 2022 and 2023 data taking campaigns: 68.6 fb⁻¹
 - Uptime of 97 %
 - Five emulsion target replacements.
 - Keep track density $< 4 \times 10^5 \text{ tracks/cm}^2$
 - Limit the exposure to 20 fb⁻¹
- 2024:
 - Instrument only the lower half target with emulsions
 - Exposure limited to 12 fb⁻¹
 - 79.9 fb⁻¹ of pp collisions recorded by the electronic detector.
- 2025: 49.3 fb⁻¹ of luminosity was collected this year.


Data Taking and Event Reconstruction



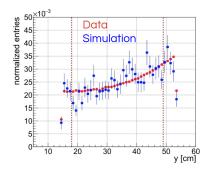
Two phases of event reconstruction

Online with Electronic Detectors

- Identify signal candidates (neutrino or FIPs)
- Tag muons (muon system)
- Energy reconstruction through ECAL+HCAL

Offline with Emulsion Detectors

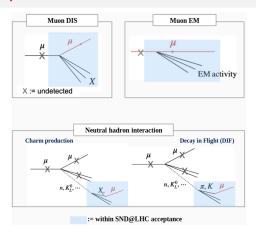
- Reconstruct vertices within micrometric resolution.
- Match vertices with electronic data, get timestamp, reconstructed energy



Measurement of the muon flux at the SND@LHC

experiment (Eur. Phys. J. C (2024) 84: 90)

- The IP1 muons constitute the main background source for SND@LHC.
- Dedicated muon flux measurement has been conducted.

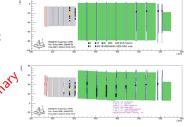

year	rate [Hz]	flux [trk/(fb/cm ⁻²)]
2022–2023	557	1.8×10^{4}
2024	1154	$3.8 imes 10^4$
2025	782	2.7×10^{4}

 Analysis of 2024 and 2025 data is ongoing.

Gradient along vertical direction observed in 2022-2023

Observation of Collider Muon Neutrinos with the SND@LHC Experiment (Phys.Rev.Lett. 131 (2023) 3, 031802)

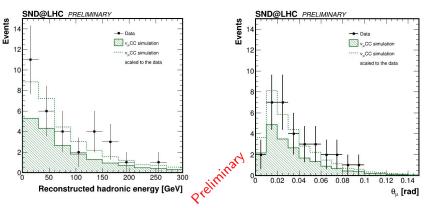
8 neutrino event candidates observed with a statistical significance of 6.8 σ


ν_{μ} Analysis Update

The search for ν_{μ} interactions is updated with extended fiducial volume and inclusion of 2023 data, results to be published.

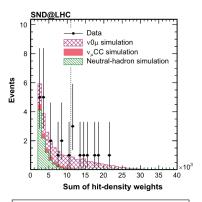
Event Selection

- Fiducial Volume
 - Reject only vertices in the first wall
 - Reject side-entering backgrounds
- ν_{μ} identification
 - Large ECAL and HCAL activity
 - Single muon track associated to the vertex


- Number of events expected in 68.6 fb⁻¹
 with extended fiducial volume
 - \bullet Signal: 19.1 ± 4.1
 - Neutral hadrons: 0.25 ± 0.06
 - Passing muons: 1.53

Number of events observed: 32

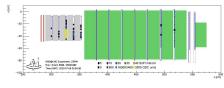
ν_{μ} Analysis Update

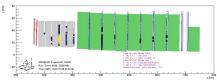

Kinematics of muon neutrino candidates agree with signal prediction.

• 12-20 % energy resolution was achieved with the test beam campaign in 2023. [Paper submitted to JINST]

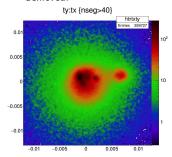
Observation of collider neutrinos without final state muons with the SND@LHC experiment (Phys. Rev. Lett. 134, 231802 - Published 13 June, 2025)

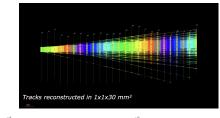
- Signal (0μ) : ν_e CC+ ν_τ CC, NC
- Backgrounds
 - Neutral Hadrons: 0.015
 - cut on sum of hit-density weights at 11 × 10³ maximizes the efficiency.
 - Neutrino Background: 0.30
 - Dominated by ν_{μ} CC
- 0μ Observation:
 - Expected signal:7.2 events
 - 4.9 ν_e CC, 2.2 NC, 0.1 ν_τ CC
 - ullet Expected bkg: 0.32 ± 0.06

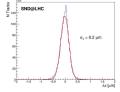


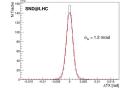

9 events observed with a significance of 6.4 σ

Search for 0μ Events

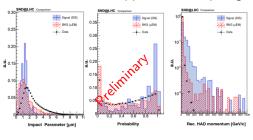


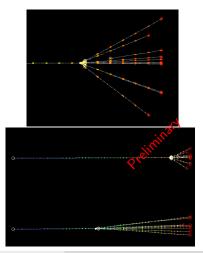



Emulsion Data Analysis



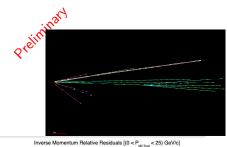
- ullet Track density up to 4×10^5 tracks/ cm^2 (factor 10^3 larger w.r.t. OPERA)
- Excellent tracking resolution achieved.

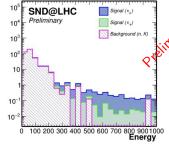


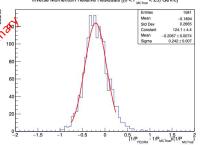

Observation of muon DIS in emulsion data

• The identification of muon DIS in the emulsion target was done with a cut-based approach on topological and kinematical parameters.

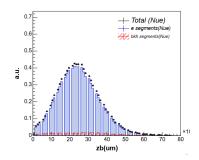
Observed: 992 ± 32 Expected: 1105 ± 69

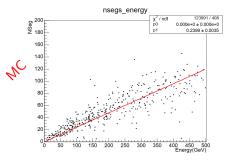



Neutrino Search in Emulsion Data

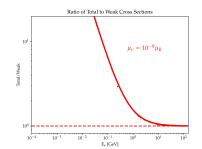


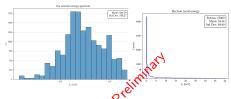
• Vertex search is ongoing

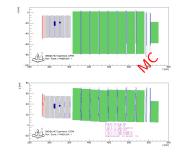



Electron Identification in Emulsion Target

- Electron ID based on EM shower identification
- Electron energy estimate based on number of segments at the shower maximum proportional to electron energy.

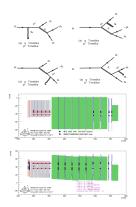

ν_{τ} Magnetic Moment

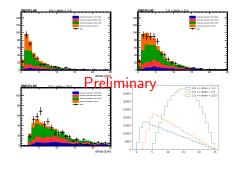




• The best limit on the magnetic moment of the tau neutrino has been established by the DONuT collaboration (2001):

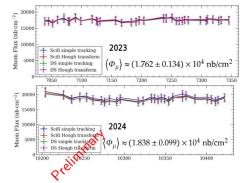
$$\mu_{
u_{ au}} < 3.9 imes 10^{-7} \mu_{B}$$

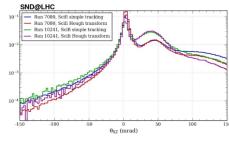



Non-Neutrino Physics

In addition to neutrinos, other physics analyses are ongoing

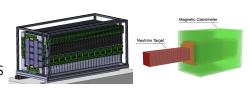
 Muonic Trident cross section measurement will be performed inside the rock.

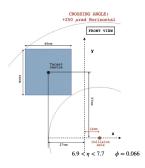




Non-neutrino physics

• Muon flux measurement with heavy ion runs. MC expectation : 1.56 \pm 0.19 \times 10⁴ nb/cm², well agreement with measured flux.




Future Upgrades: HL-LHC

- Iron core magnetic spectrometer identify ν_{μ} and $\overline{\nu}_{\mu}$
- Vertex detector with Si detector.
 - will be recycled from the CMS outer barrel tracker.
- Improved HCAL and timing detectors

	CC DIS Interactions (3k fb-1, 1.3 ton)	
Flavour	total (DPMJET)	cc-bar (DPMJET)
$\nu_{\mu} + \overline{\nu}_{\mu}$	1.5×10 ⁴	2.4x10 ³
$\nu_e + \overline{\nu}_e$	3.4x10 ³	2.7x10 ³
$\nu_{\tau} + \overline{\nu}_{\tau}$	2.8x10 ²	2.8x10 ²
Total	1.9x10 ⁴	5.4x10 ³

Summary

- SND@LHC is running successfully since the start of LHC RUN3.
- Dedicated background studies have been done together with the measurement of the muon flux.
- First observation of neutrinos produced in pp collisions
- ullet u_{μ} CC analysis is ongoing with 2023 data.
- 9 non- ν_{μ} CC (ν_{e} CC+ ν_{τ} CC+NC) neutrino events were observed and published in PRL.
- Excellent resolution is achieved in emulsion, and neutrino analyses are ongoing on the emulsion side.
- The search for muonic tridents and muon DIS are also being studied.
- The detector will be upgraded in LHC Run 4.

Back up slides

Data Taking and Event Reconstruction

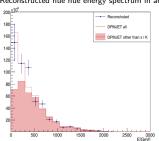
August 2020: Letter of Intent published

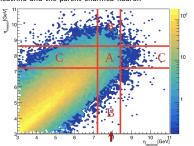
March 2021: Approvel by CERN Research Board

December 2021: Detector installed

April 2022: First data taken

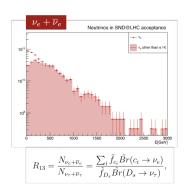
SND@LHC is operating since the start of LHC RUN3

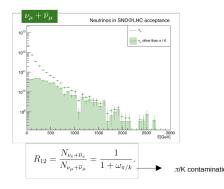

Physics Motivation


Heavy Flavour Physics

- 90 % of ν_e and $\bar{\nu}_e$ produced SND@LHC come from charmed hadron decays. This provides opportunities to:
 - Measure $pp \to \nu_e X$ cross section.
 - Measure forward charm production through neutrinos
 - Constrain gluon PDF at very small x

Correlation between pseudo-rapidity of the (anti-) electron neutrino and the parent charmed hadron



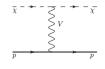

Physics Motivation

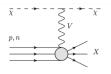
Lepton Flavor Universality Test (LFU)

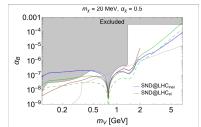
 The identification of three neutrino flavours in the SND@LHC detector offers a unique possibility to test the Lepton Flavor Universality(LFU).

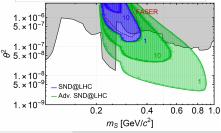


Physics Motivation




SND@LHC experiment can probe into large variety of Beyond Standard Model (BSM) scenarios describing Hidden Sector


 FIPs production mechanisms (Bremsstrahlung (a), Meson Decay(b) and Drell-Yan (c))



 FIP interaction: Elastic Scattering(Left), Ineastic Scattering (Right)

