

Progress of solar pp neutrino search with XENONnT

Jingqiang Ye(叶靖强)
yejingqiang@cuhk.edu.cn
The Chinese University of Hong Kong, Shenzhen
On behalf of the XENON Collaboration

August 26th, 2025
Xichang, China
Topics in Astroparticle and Underground Physics (TAUP2025)

XENON collaboration

30 institutes ~200 scientists

TAUP 2025

Houston

◆ Chicago

Solar pp neutrinos

- Produced in the proton-proton fusion process in the Sun
- Dominant in solar neutrino flux (~91%) but with low energies

Signal spectrum in xenon

- Electronic recoil (ER) signal, recoil energy below ~250 keV
- Free electron approximation (FEA): assume electrons are free
- FEA + stepping: binding energies
- Relativistic random phase approximation (RRPA): many-body effect between electrons
- RRPA extended: extrapolation above 30 keV

J. Chen et al., PLB 774, 656-661 (2017)

Chih-Pang Wu's talk on Thursday

Why xenon?

Selected Properties of Xe

Property		Value
Atomic Number (Z)		54
Atomic Weight (A)	1	31.30
Number of Electrons per En	ergy Level 2,8,18	8,18,8
Density (STP)	5.89	94 g/L
Boiling Point	-108	3.1 °C
Melting Point	-111	1.8 °C
Volume Ratio		519
Concentration in Air	0.0000087 % by v	olume

- detector threshold

 background
- Decent
- Low
- Extremely low

Exposure

- Science Run 0 (SR0): Jul. 6th, 2021 Nov. 10th, 2021
- Science Run 1 (SR1): May. 19th, 2022 Aug. 8th, 2023
- SR0 and SR1 fiducial volume (FV) ~4 tonnes
- Total exposure ~2.5 tonne·year

exposure

Efficiency and threshold

- Peak reconstruction efficiency: ability to reconstruct S1 or S2 signals
- Total efficiency > 80% after 3 keV
- 1 keV threshold for this search
 - ► 190 keV threshold for Borexino search (2018)

detector threshold

Pb214 background - reduction

Rn-222 decay chain

Radon Distillation Column

- Pb-214 from the Rn-222 decay chain has a significant contribution to ER backgrounds.
- Radon distillation column: reduce Radon exploiting difference in vapor pressure of Xe and Rn
 - ► SR0: 1.9 uBq/kg
 - ► SR1: 0.9 uBq/kg. Comparable level to solar neutrino background.

Pb214 background - constraints

Rn-222 decay chain

- Rn-222 alpha rate can be precisely measured, but Pb-214 rate is not
- Rn-222 calibration: constrain the Pb-214/Rn-222 ratio to constrain Pb-214
- Measured ratio during Rn-222 calibration: 0.67 +/- 0.03

Kr85 background

Kr-85 source

Delay coincidence

- Anthropogenic radioactive isotope
- Kr reduction: Krypton distillation column
- Kr-85 constraint
 - Natural Kr measurement using rare gas mass spectrometer (RGMS) + Kr-85/nat Kr ratio
 - Delay coincidence (beta + gamma). See Y. Kaminaga's poster for more details.

Krypton Distillation Column

Material background

Data-MC comparison in edge volume

- Material backgrounds: Compton scattering of gammas from detector materials
- Reduction: careful material selection and screening [XENON, EPJC 82, 599 (2022)]
- Constraint: Data-MC comparison in the edge volume (2 cm outside FV)
 - ► MC: simulation using screening inputs
 - Data: edge volume inner volume

Material background

Data-MC comparison in edge volume

- Data higher than MC by a factor of 1.49 (1.05) in SR0 (SR1)
- Final prediction
 - Rate: scale MC result with the factor above
 - Uncertainty: statistical (simulation) and systematics (data-MC difference)

Summary

- Xenon detectors are suitable for searching solar pp neutrinos, as it has decent exposure, low threshold, extremely low backgrounds
- Dominant contributor of backgrounds for this search in XENONnT, Pb-214 from Rn-222 decay chain, has been reduced to a level where its contribution is similar to solar pp neutrinos below 10 keV.
- A dedicated Rn-222 calibration was performed to further constrain the Pb-214 background.
- Kr-85 background model ongoing, and improved modeling of material backgrounds.

Stay tuned!

Back up

Fiducial volume

- The fiducial volumen (FV) for this search is largely driven by material backgrounds.
- SR0 and SR1 FV share similar shapes, with the mass as follows:
 - ► SR0: (4.13 +- 0.12) tonne
 - ► SR1: (4.24 +- 0.23) tonne
- ► SR0 and SR1 have different ways to account for the charge-insensitive volume, which makes SR0 FV look 'larger'.
 - ► SR0: indirectly in FV mass calculation (about 4% decrease)
 - ► SR1: directly in position correction

Pb212 background

- Beta decay of Pb-212 from the Rn-220 decay chain could also contribute to ER background
- Pb-212 has relatively long half-life (10 hours) and may plate out on detector materials such as PTFE
- A plate out model is established using Rn-220 calibration data, which allows for constraining the Pb-212 background rate using the Rn-220 alpha rate that is easy to measure.

Plateout for Rn222 chain

Rn-222 decay chain

- Po-214/Rn-222 ratio is (almost) consistent between SR0, SR1, and Rn-222 calibration in SR1
- Po-218/Rn-222 ratio is not consistent, which may indicate different plateout effects in different periods.

Efficiency for SR0 and SR1

