

Search for neutron decay into an antineutrino and a neutral kaon in Super-Kamiokande

K. Yamauchi (Tokyo University of Science) for Super-Kamiokande Collaboration

August 26, 2025

TAUP 2025

GUTs and nucleon decay

Grand Unified Theories (GUTs)

- Propose a unification of the weak, strong, and electromagnetic interactions at extremely high energies, typically the order of 10^{15} - 10^{16} GeV, which is well beyond the energy currently achieved by accelerators.
 - → Predict processes that violate baryon number conservation including nucleon decay.

Nucleon decay

- Provides a critical experimental test for GUTs.
- Decay particles or lifetimes depend on the models.
 - → Various decay modes have been searched for, but none have been discovered yet.
- Super-Kamiokande monitors a large number of nucleons and searches for nucleon decay.

Super-Kamiokande detector

- 50 kton water Cherenkov detector
- Located 1,000 m underground in Kamioka mine, Japan.
- >11,000 PMTs are placed on the wall.

Photo-multiplier tube (PMT)

- Charged particles are generated by nucleon decay or neutrino interaction.
- ② They emit Cherenkov light.
- 3 Cherenkov light is detected by PMTs.

More details of the detector can be found in [1].

[1] S. Mine, Instrumentation and Technics in High Energy Physics, edited by D. Lincoln, pp.251-290 (2024).

Particle identification by the shape of Cherenkov ring

Electron: diffuse ring \rightarrow shower type (e, γ)

Muon: sharp-edged ring \rightarrow non-shower type (μ, π^{\pm}, p)

Nucleon decay search in Super-K

Cherenkov ring produced by μ , π^{\pm} : sharp edge (non-shower type)

- Charged particles produced by the decay of protons or a bound neutron in oxygen nuclei are detected.
- By monitoring a large number of nucleons ($\sim 10^{33}$), Super-K is sensitive to nucleon decay with extremely long lifetime ($> 10^{32}$ years).
- Background events are atmospheric neutrino interactions.

Recent nucleon decay searches in Super-K

• Although $p \to e^+\pi^0$ and $p \to \bar{\nu}K^+$ are predicted as major decay modes by GUTs, it is important to search for other decay modes to test various GUT models.

Decay mode	Exposure [kton·years]	Lifetime limit [years]	Analysis method	Reference
$p \rightarrow e^+ \pi^0$	450	2.4×10^{34}	Box cut	PRD 102 , 112011 (2020)
$p \to \mu^+ \pi^0$		1.6×10^{34}		
$p \rightarrow \nu \pi^+$	484	3.5×10^{32}	Spectrum fit	In preparation, preliminary
$n o \nu \pi^0$		1.4×10^{33}		
$p \rightarrow e^+ \eta$	373	1.4×10^{34}	Box cut	PRD 110 , 112011 (2024)
$p \to \mu^+ \eta$		7.3×10^{33}		
$p \rightarrow e^+e^+e^-$	373	3.4×10^{34}	Box cut	PRD 101 , 052001 (2020)
$p \rightarrow \mu^+ e^+ e^-$		2.3×10^{34}		
$p \rightarrow \mu^- e^+ e^+$		1.9×10^{34}		
$p \rightarrow e^+ \mu^+ \mu^-$		9.2×10^{33}		
$p \rightarrow e^- \mu^+ \mu^+$		1.1×10^{34}		
$p \to \mu^+ \mu^+ \mu^-$		1.0×10^{34}		

Recent nucleon decay searches in Super-K

- Various approaches are employed in recent analyses to search for nucleon decay modes in which nucleon invariant mass cannot be reconstructed.
- More details of some decay modes can be found in <a>[2][3].

[2] S. Mine, NNN23 (2024). [3] S. Miki, NNN24 (2024).

Decay mode	Exposure [kton·years]	Lifetime limit [years]	Analysis method	Reference
$p \rightarrow e^+ \pi^0 \pi^0$	401	7.2×10^{33}	Box cut	In preparation, preliminary
$p \to \mu^+ \pi^0 \pi^0$		4.5×10^{33}		
$p \rightarrow e^+ X^*$	401	1.72×10^{33}	Spectrum fit	In preparation, preliminary
$p \to \mu^+ X^*$		0.61×10^{33}		
$p \to \bar{\nu} K^+$	365	8.2×10^{33}	Box cut	Presentation at BLV 2019
$p \to \mu^+ K^0$	373	3.6×10^{33}	Box cut	PRD 106 , 072003 (2022)
$n\to \bar{\nu}K^0$	401	7.8×10^{32}	Spectrum fit	arxiv:2506.14406, preliminary
$^{16}O(ppp)$ $\rightarrow ^{13}C(\pi^{+}\pi^{+}e^{+})$	401	4.2×10^{32}	Machine learning (CNN)	In preparation, preliminary
$n o \bar{n}$	373	3.6×10^{32}	Multivariate analysis (MVA)	PRD 103 , 012008 (2021)

*X is an unknown massless neutral particle and cannot be detected

Target neutron decay in this study

- Target neutron decay mode: $n \to \overline{\nu}K^0$
 - Predicted by SUSY models
 - Charged particles from K^0 decay are detected.
- Previous research: K. Kobayashi et al., Phys. Rev. D 72 052007 (2005).
 - Analyzed about 4 years of the data since the start of Super-K observation (referred to as SK-I period)
 - Set lower lifetime limit as $\tau/B(n \to \bar{\nu}K^0) > 1.3 \times 10^{32}$ years at 90% C.L.
- Updates in this study: <u>arxiv:2506.14406</u>
 - Expand the observation period to cover the entire pure water phase $(1996-2020, about 18 \text{ years}, \times 4.4 \text{ exposure})$
 - Improve the reconstruction of charged pion
 - Improve the event selection
 - Previous study: Determined the signal region from reconstructed K^0 invariant mass and momentum (box cut)
 - This study: Perform spectrum fit (likelihood analysis) on the invariant mass distribution.

K^0 decay modes to search for

- For the $n \to \bar{\nu} K^0$ mode, particles from K^0 decay are detected.
- There are various decay modes for K_S^0 ($\tau = 90$ ps) and K_L^0 ($\tau = 51$ ns), which have different lifetimes.
 - $K_S^0 \to \pi^+\pi^-$ (BR: 69.2%), $2\pi^0(30.7\%)$
 - $K_L^0 \to \pi^{\pm} l^+ \nu$ (67.6%), $3\pi^0$ (19.5%), $\pi^+ \pi^- \pi^0$ (12.5%)

Proportion of each decay mode in detector simulation

$$K_S^0 \to 2\pi^0$$
 $K_L^0 \to \pi^{\pm} l^{\mp} \nu$ $K_L^0 \to 3\pi^0$ $K_L^0 \to \pi^{+} \pi^{-} \pi^0$ Others (charge exchange, etc) $41.7 \pm 0.2\%$ $18.5 \pm 0.1\%$ $8.3 \pm 0.1\%$ $2.8 \pm 0.1\%$ $1.73 \pm 0.05\%$ $27.0 \pm 0.2\%$

Small statistics and **Target decay modes**

included $K_S^0 \rightarrow 2\pi^0$ selection

Neutrino carries away energy \rightarrow Cannot construct K^0 invariant mass

statistics and other particles via scattering in water

Small

 K_L^0 decays into K^+

Only K_S^0 decay events are searched for, same as the previous study.

Signal event selection for $K_S^0 \rightarrow 2\pi^0$

Main selection criteria

- The number of rings should be 3 or 4.
 - All ring should be showering due to $\pi^0 \to 2\gamma$.
- The reconstructed K^0 momentum should be $200 < P_{K^0} < 500 \text{ MeV/c}$.

True K_S^0 momentum just after leaving the oxygen nucleus

Final samples for $K_S^0 \rightarrow 2\pi^0$

Vertical dashed line: signal region used in the previous analysis

- Many events remain in the signal region (right top, as expected).
 - \rightarrow Instead of cutting off events based on a threshold, perform spectrum fitting to K^0 invariant mass distribution (discussed later)

 $m_{K^0} = 497.6 \text{ MeV/c}^2$

Signal event selection for $K_S^0 \to \pi^+\pi^-$

- Main selection criteria
 - The number of rings should be 2.
 - All rings should be non-showering due to π^{\pm} .
 - Cut off at K^0 momentum threshold
- \Rightarrow Spectrum fit to K^0 invariant mass

Calculated from π^{\pm} momentum (and direction + mass)

 \Rightarrow The performance of π^{\pm} momentum reconstruction is important. It has been improved in this study (details are in backup).

Event selection for $K_S^0 \to \pi^+\pi^-$

- Main selection criteria
 - The number of Cherenkov rings should be 2.
 - All rings should be non-showering due to π^{\pm} .
 - The K^0 momentum should be 200 $\, < P_{K^0} < 500 \, \mathrm{MeV/c}$.

Data

Final samples for $K_S^0 \to \pi^+\pi^-$

Atm-ν MC

- Many events remain in the signal region.
 - → Perform **spectrum fit**

 $n \to \bar{\nu} K^0 MC$

- Spectrum fit:
 - Signal and BG MC are compared with data.
 - Systematic uncertainties in signal and BG MC are accounted in the fit.
 - Two K_S^0 decay modes are simultaneously fitted.

Fitting to K^0 invariant mass distribution

- After fitting, there is no significant excess of neutron decay signals over the background.
 - Best fit: $\chi^2/N_{\text{dof}} = 117.4/119$

Upper limit of $n \to \bar{\nu} K^0$ decay is obtained by the fit (90% C.L. upper limit is shown by blue lines).

Impact of systematic uncertainties on sensitivity

Systematic unce	Sensitivity [$ imes 10^{33}$ years]	
No systematic uncertaint	1.07	
All systematic uncertaint	0.85	
Neutrino flux and	Flux	0.96
neutrino oscillation	Oscillation	1.07
	Quasi-elastic scat.	1.06
Neutrino interaction	Single pion production	0.91
	Deep inelastic scat.	0.95
Reconstruction (ring, particl	1.03	
Final State Interaction (FSI) and	K ⁰ FSI, SI	1.07
Secondary Interaction (SI)	π FSI+SI	0.92
Physical model for no (correlated decay and F	1.07	
En aray scala	Electron momentum	1.06
Energy scale	π^\pm momentum	1.03

- The sensitivity is greatly affected by the uncertainty of
 - model of single pion production, which is the main background interaction
 - model of pion scattering within the nucleus (FSI) and in water (SI)

Limits on neutron decay lifetime

- As no significant neutron decay was observed against atmospheric neutrino, a lower limit on the lifetime of a bound neutron was set.
- Lower lifetime limit at 90% C.L.
 - This study: $\tau > 7.8 \times 10^{32}$ years (401 kton-years exposure)
 - Previous study: $\tau > 1.3 \times 10^{32}$ years (92 kton-years exposure)
 - \rightarrow The results improves the previous limit by a factor of six, making it the most stringent constraint on the $n \rightarrow \bar{\nu} K^0$ decay mode to date.

Summary

- Nucleon decay provides a critical experimental test for GUTs.
- Super-K is searching for various nucleon decay modes [2][3].
 [2] S. Mine, NNN23 (2024). [3] S. Miki, NNN24 (2024).

- We searched for the neutron decay via $n \to \overline{\nu} K^0$ using 4.4 times larger data set from the Super-Kamiokande and by the improved analysis method
 - No significant signal events were found.
 - Spectrum fit to the K^0 invariant mass distribution yielded a lower limit on the decay lifetime of 7.8×10^{32} years at 90% C.L., which is six times better than the previous search.

Backup

Signal selection of $n \to \overline{\nu} K^0$ search

Two selections for K_S^0 decay modes

	$K_S^0 \rightarrow 2\pi^0$	$K_S^0 \to \pi^+\pi^-$	
#1	Fully Contained (FC), Fiducial Volume (FC)		
#2	$N_{\rm ring} = 3 \text{ or } 4$	$N_{\rm ring}=2$	
#3	$N_{\mu-{ m like\ ring}}=0$ (3 or 4 e -like rings)	$N_{\mu-\mathrm{like\ ring}}=2$	
#4	$N_{\text{Michel}-e} = 0$	$N_{\text{Michel}-e} = 0 \text{ or } 1$	
#5	$200~{ m MeV} < p_{K^0} < 500~{ m MeV}$		
#6	$300 < W_{K^0} < 700~{ m GeV} ightarrow { m invariant\ mass\ fit}$		

Improvement of π^{\pm} momentum reconstruction

Method for momentum reconstruction

- e, μ : Estimate from the correlation between momentum and collected charge
- π^{\pm} : Momentum is reconstructed by the combination of collected charge and the opening angle of Cherenkov rings

• By refining the estimation of the photoelectron distribution, better accounting for the effects of π^{\pm} hadronic scattering, the accuracy of opening angle reconstruction has been improved.