# The first neutrino mass limit of **HOLMES**

#### Sara Gamba

University & INFN of Milano Bicocca On behalf of HOLMES collaboration







#### Direct neutrino mass measurements

- → Model-independent method: kinematic analysis of beta decay;
- $\rightarrow$  Energy spectrum distorted by non-zero  $\nu$  mass;
- **→** Spectrometry:
  - ▶ the source is outside the detector;
  - high statistics allowed, no pile-up issue;
  - source systematics;
  - ▶ best limit:  $m_{\beta}$  < 0.45 eV @ 90% C.L., KATRIN Collaboration, Science 2025.
- **➤ Calorimetry** (HOLMES approach):
  - ▶ source embedded inside the detectors;
  - ▶ all energy measured, except neutrino's;
  - ▶ no systematic uncertainty related to the source;
  - trade off between activity and time resolution (pile-up).

$$m_{eta}^2=\sum_i |U_{ei}|^2 m_{
u_i}^2$$



## The EC decay of <sup>163</sup>Ho



- $\rightarrow$   $E_C =$  atom de-excitation + nuclear recoil;
- → Method proposed by A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429;
- →  $Q = 2863.2 \pm 0.6$  eV Ch. Schweiger et al. Nat. Phys. (2024);
- $o au_{1/2} \sim 4570 \text{ y.}$

### The HOLMES experiment

- ➤ Low temperature microcalorimeter arrays with ion-implanted <sup>163</sup>Ho;
- **▶** Proof-of-principles for a final  $^{163}$ Ho experiment with sub-100 meV  $m_{\beta}$  sensitivity;
- → Gradual approach based on scalability.



#### **HOLMES** detectors

- ➤ Low temperature (~ 100 mK) microcalorimeters;
- → <sup>163</sup>Ho implanted gold absorbers each coupled to a Cu/Mo **Transition Edge Sensor**;
- $\rightarrow$  1+1  $\mu$ m Au thickness for electrons full absorption;
- →  $\mu$ MUXed TES 64-pixel array ~0.3 Bq/pixel.





### Multistep detector production

- → Multiple fabrication steps required for <sup>163</sup>Ho implantation;
- TES & first Au layer (NIST), implantation (Ge), Au deposition & membrane release (MiB);
- ➤ Ion implanter: source + dipole + slit and FC;
- → KOH Si etching (thermal coupling to the bath).









Holmes array chip in KOH solution

Back of the array after the KOH etching

## First data-taking runs (2024)

- $\rightarrow$  48 measured pixels<sup>a</sup>;
- $\rightarrow$  Average activity  $\sim 0.27$  Bq;
- →  $A_{tot} = 15 \text{ Bq } (\sim 3.2 \times 10^{12} \text{ nuclei});$
- $\rightarrow \Delta E_{FWHM} \in [5,7] \text{ eV};$
- $\rightarrow$  ~2 months of data taking:  $6 \times 10^7$  events;
- → <1% signals discarded by first level analysis;
- $\rightarrow$  Duty-cycle  $\sim$ 82%;
- Corrected energy gain stability over multiple days.

<sup>a</sup>M1 rate high enough for gain drift correction



### EC spectrum calibration

- → Run with fluorescence X-ray source;
- $\rightarrow$  2<sup>nd</sup> order polynomial calibration:
  - $\triangleright$   $E(A) = a \times A + b \times A^2$ .
- → Find EC peak energies:
  - ▶ Bayesian learning fit accounting for small energy scale deviations.
- → Energy calibration for physics runs.



| Peak | Position $E_0$ [eV] | Width $\Gamma$ [eV] | Asymmetry $\delta_{AS}$ |
|------|---------------------|---------------------|-------------------------|
| M1   | $2040.8 \pm 0.3$    | $14.49 \pm 0.05$    | $1.306 \pm 0.006$       |
| M2   | $1836.4 \pm 0.8$    | $8.2 \pm 0.3$       | $1.03 \pm 0.05$         |
| N?   | $454.5 \pm 0.1$     | $22.3 \pm 0.4$      | $0.62 \pm 0.02$         |
| N1   | $411.7 \pm 0.1$     | $5.57 \pm 0.03$     | $1.270 \pm 0.008$       |
| N2   | $329.0 \pm 0.1$     | $16.4 \pm 0.2$      | $0.69 \pm 0.01$         |
| O?   | $61.0 \pm 0.8$      | $6.0 \pm 0.5$       | $1.000 \pm 0.009$       |
| O1   | $50.9 \pm 0.8$      | $2.4 \pm 0.4$       | $0.80 \pm 0.09$         |

Scan the QR code to read our **new article** (subm. to JHEP): "Phenomenological Modeling of the 163Ho Calorimetric Electron Capture Spectrum from the HOLMES Experiment'



## High statistics physics runs



- $\sim 7 \times 10^4 \text{ detector} \times \text{hour};$
- $\sim$  1000 summed partial datasets;
- ➤ Energy calibrated with N1, M1 and M2;
- → 300 eV trigger threshold;
- → Deviations from single hole spectrum;
- $\rightarrow$  shake up/off contributions<sup>a</sup>.

 $<sup>^</sup>a\mathrm{Ho}{\rightarrow}\mathrm{Dy}$  perturbation "shakens" atomic electron(s) to an upper bound state (SU) or to the continuum (SOF)

## **Endpoint analysis**

- → Bayesian analysis with 13 free parameters:
  - ► ROI: [2250, 3500] eV;
  - ►  $\Delta E_{FWHM} \sim 6 \text{ eV}, f_{pp} \lesssim 10^{-5};$
  - > spectrum as sum of a few terms.



#### Spectrum @ ROI [2250,3500] eV:

$$\mathcal{S}_{ ext{exp}} = \left[ N_{tot} \left( \mathcal{S}_{ ext{Ho}} + f_{eff}^{pp} \mathcal{S}_{ ext{Ho}}^{pp} 
ight) 
ight] * \mathcal{R}_{eff} + b_{eff}$$

 $N_{tot}$ : number of events;

 $\mathcal{S}_{\text{Ho}: \text{Ho real spectrum}}$ ;

 $f_{eff}^{pp}\mathcal{S}_{ ext{Ho}}^{pp}$ : pile-up fraction and pile-up spectrum;

 $b_{eff}$ : flat background;

 $\mid \mathcal{R}_{eff}$  : detector effective resolution.

$$\mathcal{S}_{ ext{Ho}} pprox \ k_0 \left( k_{ ext{BW}} \mathcal{S}_{ ext{BW}} + k_{ ext{SO}} \mathcal{S}_{ ext{SO}} + \mathcal{S}_{ ext{pol}} 
ight) imes \mathcal{F}_{ ext{PS}} \ \mathcal{S}_{ ext{RW}} : ext{M1 peak right tail}$$

 $\mathcal{S}_{\mathrm{SO}}$  : energy spectrum of shake off de-excitation

 $\mathcal{S}_{
m pol}$  : tails of other peaks and shake-offs

 $\mathcal{F}_{\mathrm{PS}}~:~phase~space,~only~term~with~m_{\beta} \propto \! (E_0-E_c) \sqrt{(E_0-E_c)^2-m_{\beta}^2}$ 

Scan the QR code to read our new article (accepted by PRL): "Most stringent bound on electron neutrino mass obtained with a scalable

low temperature micro

calorimeter array



#### Neutrino mass limit

- → Posteriors explored via Hamiltonian MCMC (STAN);
- $\rightarrow$   $E_0$  is a free parameter;
- → Upper limit  $m_{\beta}$  <27 eV (90% CI);
- → Best published limit on  $m_{\beta}$  from EC of <sup>163</sup>Ho;
- → MC simulations: sensitivity of  $40 \pm 10 \text{ eV}$ ;
- $\rightarrow m_{\beta}$  is correlated only with  $E_0$ .







# <sup>163</sup>Ho EC calorimetric spectrum



Scan the QR code to read our new article (subm. to JHEP): "Phenomenological Modeling of the <sup>163</sup>Ho Calorimetric Electron Capture Spectrum from the HOLMES Experiment"



- → Bayesian unfolding of all spectra;
- → Phenomenological description:
  - asymmetric Lorentzians;
  - shake-up peaks and shake-off spectra.
- → EC spectrum deviates from all theoretical predictions;
- → ROI signal rate twice higher than with single-hole (shake off + M1 asymmetry);
- → ROI: smooth and featureless;
- → Assessment of future <sup>163</sup>Ho experiments sensitivity.

# <sup>163</sup>Ho future experiment sensitivity (stat. only)



- → No background & no pile-up  $\Rightarrow$  need to go to  $10^{17}$  events;
- → Still need to establish the systematics;
- →  $\mathcal{O}(150)$  meV:  $N_{ev} \sim \mathcal{O}(10^{15})$ ,  $N_{det} \sim \mathcal{O}(10^{5})$ ,  $A_{det} \sim \mathcal{O}(10)$  Bq,  $T \sim \mathcal{O}(10)$  y;
- $ightharpoonup \mathcal{O}(50) \text{ meV: } N_{ev} \sim \mathcal{O}(10^{17}), N_{det} \sim \mathcal{O}(10^7), A_{det} \sim \mathcal{O}(10) \text{ Bq, } \Delta E_{FWHM} \sim \mathcal{O}(1) \text{ eV,}$  $T \sim \mathcal{O}(10) \text{ y.}$

#### What's next?

- → Achieved the **best published limit** on **neutrino mass** using a <sup>163</sup>Ho source;
- → Need many detectors and higher activity!
- → Increase  $^{163}$ Ho activity per detector  $\mathcal{O}(10)$  Bq:
  - ▶ Reduce detector operating temperature to  $\lesssim 40$  mK.
- ➤ Lower readout/DAQ costs few euros per channel:
  - ▶ New multiplexing scheme with a higher multiplexing factor;
  - Microwave-multiplexed Kinetic Inductance Current Sensors;
  - Leverage new wide-bandwidth RFSoC boards.
- → Improve ion implanter for better control and higher efficiency:
  - ▶ Integration of electrostatic triplet, X-Y scan and a target chamber;
  - ▶ Upgrading the ion source.

#### ➤ Expand international collaboration: happy to chat!

# Thank you for your attention!



Scan the QR code to read our new article (subm. to EPJ): "Impact of embedded Ho on the performance of the transition-edge



Scan the QR code to read our new article (subm. to JHEP):

"Phenomenological Modeling of the 163Ho Calorimetric Electron Capture Spectrum from the HOLMES Experiment"



# Backup slides

#### Neutrino mass fit formula

$$\mathcal{S}_{exp} = \sum_{i} [N_i (\mathcal{S}_{ ext{Ho}} + f_i^{pp} \mathcal{S}_{ ext{Ho}}^{pp}) + \mathcal{B}_i] * \mathcal{R}_i \ \mathcal{S}_{ ext{exp}} = \left[ N_{tot} \left( \mathcal{S}_{ ext{Ho}} + f_{eff}^{pp} \mathcal{S}_{ ext{Ho}}^{pp} 
ight) \right] * \mathcal{R}_{eff} + b_{eff} \ \mathcal{S}_{ ext{Ho}} pprox k_0 \left( k_{ ext{BW}} \mathcal{S}_{ ext{BW}} + k_{ ext{SO}} \mathcal{S}_{ ext{SO}} + \mathcal{S}_{ ext{pol}} 
ight) imes \mathcal{F}_{PS} \ \mathcal{R}_{eff}(E_c) \simeq \mathcal{G}(E_c | 0, \Delta E_{eff}) \ \mathcal{S}_{BW}(E_c | \gamma, E_{ ext{M1}}) = \frac{1}{2\pi} \frac{\gamma}{(E_c - E_{ ext{M1}})^2 + \gamma^2/4} \ \mathcal{S}_{pol}(E_c | ec{ heta}) \simeq heta_0 \ \mathcal{S}_{SO}(E_c | E_{so}, au_1, au_2) = \frac{1}{ au_2 - au_1} \left( e^{-(E_c - E_{so})/ au_2} - e^{-(E_c - E_{so})/ au_1} \right)$$