

Searches for Double Beta Decay of ¹³⁴Xe with EXO-200 Phase II Data

Presented by Thomas Brunner, Hannah Peltz Smalley, Seth Thibado, Andrea Pocar

on behalf of the EXO-200 Collaboration

TAUP 2025

XIX International Conference on Topics in Astroparticle and Underground Physics

Xichang, Sichuan, China – August 26, 2025

Outline

- The EXO-200 Experiment
- Double Beta Decay in ¹³⁴Xe
- Analysis Methodology
- Results
 - Sensitivity reach
 - ββ half-lives of ¹³⁴Xe
- Outlook

The EXO-200 TPC

- EXO-200 was active between 2011-2018 at the WIPP underground site in New Mexico
 - Phase I ended in 2014 → Phase II began in 2016
 - \rightarrow First observation of 2vββ decay of ¹³⁶Xe in 2011
 - > Lower bound of 0vββ decay of ^{136}Xe : > 3.5 x 10^{25} y
- 200 kg LXe (≈ 130 kg of LXe in active volume)
 - \triangleright 80.672% ¹³⁶Xe and 19.098% ¹³⁴Xe
- TPC split into two drift regions sharing a common wire grid cathode
- Combination of scintillation and ionization signal allows full 3D reconstruction.
- Prompt scintillation measured on two planes of Large Area Avalanche Photodiode (LAAPD)
- Delayed ionization signal measured by crossed wires for x-y plane reconstruction.

EXO-200 Signals

- Single-phase LXe time projection chamber:
 - ➤ Prompt scintillation
 - Delayed, distributed ionization
- Multiparameter measurement:
 - ➤ Energy from combined scintillation/ionization signal
 - ➤ Topology, e.g., single-site (SS) or multi-site (MS) event
 - Position distribution from 3D event reconstruction
 - Particle identification from scintillation/ionization ratio

EXO-200 Energy Scale

- Number of electrons and photons from an event is anti-correlated and depends on electric field
 - ★ Larger E-field → more ionization

• β , γ events deposit light + charge quanta in a proportion characterized by $\theta^{\rm R}$

$$E_R = E_S \cdot \sin(\theta^R) + E_I \cdot \cos(\theta^R)$$

- "Rotated energy" = linear combination of light and charge
- θ^{R} measured every week with ²²⁸Th source

Event Topology and Multiplicity (EXO-200 data)

Allows for background measurement and reduction

Events with > 1 charge cluster: multi-site events (MS)

Events with 1 charge cluster: single-site events (SS)

EXO-200 simulations: $0\nu\beta\beta$: ~90% SS γ -rays: ~15% SS at $0\nu\beta\beta$ Q-value

EXO-200 decommissioning

Double Beta Decay in ¹³⁴Xe

$$\left[T_{1/2}^{0\nu\beta\beta}\right]^{-1} = G_{0\nu} |M^{0\nu}|^2 |\langle m_{\beta\beta}\rangle|^2$$

- $M^{0\nu}$ calculations have a large theoretical uncertainty
- $M^{0\nu}_{\text{Xe-134}} \sim 3-4$
- Constrain M by comparing isotopes
 - $M^{2\nu}$ might be correlated with $M^{0\nu}$
- Half-life of 134 Xe $\mathbf{2}\nu\boldsymbol{\beta}\boldsymbol{\beta}$ ~ order 10^{24} - 10^{25} years depending on $M^{2\nu}$, $G_{2\nu}$ might be in reach of future detectors

FIG. 2. The NMEs of the $0\nu\beta\beta$ decay in different models.

Figure: Z.W. Li, S. Y. Zhang, H. T. Xue, B. C. He, Y. A. Luo, Lei Li, F. Pan, and J. P. Draayer. Nuclear matrix elements of neutrinoless double-β decay in the SD-pair shell model with expanded model space. Phys. Rev. C, 111(2):024318, 2025.

IBM-2: J. Barea, J. Kotila, and F. Iachello, $0\nu\beta\beta$ and $2\nu\beta\beta$ nuclear matrix elements in the interacting boson model 447 with isospin restoration, Phys. Rev. C 91, 034304 (2015),448 arXiv:1506.08530 [nucl-th].

Phase space factors: J. Kotila and F. lachello. Phase space factors for double- β decay. Phys. Rev. C, 85:034316, 2012.

Status of Double Beta Decay Searches in ¹³⁴Xe

¹³⁴Xe is a double beta decay candidate

$$Q_{BB} = 825.8 \pm 0.9 \text{ keV}$$

	EXO-200 Phase-I (2017)	PandaX-4T (2024)
2νββ	≥ 8.7 x 10 ²⁰ yr	≥ 2.8 x 10 ²² yr
0νββ	≥ 1.1 x 10 ²³ yr	≥ 3.0 x 10 ²³ yr

EXOSim code implementing Schenter & Vogel parameterization

G. K. Schenter et al. A simple approximation of the Fermi function in nuclear beta decay. Nucl. Sci. Eng., 83:393–396, 1983.

PandaX: Phys. Rev. Lett. **132**, 152502 (2024) EXO-200: Phys. Rev. D **96**, 092001 (2017)

Double Beta Decay to 2⁺ Excited State of ¹³⁴Xe

- ¹³⁴Xe can decay to a 2⁺ excited state of ¹³⁴Ba
 - \circ $Q_{\beta\beta} = 225 \text{ keV}$
 - **605 keV** gamma in de-excitation $2^+ \rightarrow 0^+$

- J. Kotila and F. Iachello. Phase space factors for double-β decay.
 Phys. Rev. C, 85:034316, 2012
- $T_{1/2} (0\nu\beta\beta, 2^+) > 2.6 \times 10^{22} \text{ yr}$
 - R Bernabei, P Belli, F Cappella, R Cerulli, F Montecchia, A Incicchitti,
 D Prosperi, and C.J Dai. Investigation of decay modes in ¹³⁴Xe and ¹³⁶Xe.
 Physics Letters B, 546(1):23–28, 2002

Search for $\beta\beta$ decay modes to the 2⁺ excited state is in progress.

EXO-200 Phase II

Upgrades during shutdown

- ➤ Upgraded APD Readout
 → Reduced Noise
- > 50% stronger drift field (567 V/cm)
- De-radonator added to reduce radon in air surrounding cryostat
- Improved energy resolution
 - > 1.35%→1.15% @ 2458 keV
- Total Phase II exposure is 28.5 kg·yr (212.8 mol·yr)

Phase II Sensitivity Improvements

- With upgraded APD readout, can search at lower energies
 - 460 keV → 320 keV threshold
 - Increased sensitivity to $2\nu\beta\beta$ spectrum
- Improved energy resolution → better background discrimination

New ¹³⁴Xe analysis uses Phase II data only due to these substantial improvements

Data Quality Cuts

Fiducial volume: hexagon with a = 162 mm, 10 < |z| < 182 mm, r < 173 mm

- Coincidence cut: removes events occurring within 100 ms of one another
- Diagonal light/charge: light-charge ratio must be < 2.5 sigma from the mean
- Muon Veto: cuts data taken 1 ms before and 25 ms after a trigger of the muon veto system
- 3D position reconstruction:
 - For decays to the ground state of ¹³⁴Ba, require full 3D position reconstruction (signal is dominantly single-site)
 - For decays to the excited state of ¹³⁴Ba, cut is relaxed to allow events with at least 60% of their charge energy coming from fully reconstructed clusters ("partial 3D") (signal is largely multi-site)

Fiducial Volume

Median 90% C.L. Sensitivity (0vββ decay to ground state)

- Sensitivity evaluated with background-only fits to Toy MC resampled from a fit to the data
- Measure 90% Confidence upper limits on detected signal counts of multiple Toy MC
- Median upper limits of toy MC simulation is taken as sensitivity

Background Model

- Location of some background components is not known precisely.
- Use different background models and check how this impacts the 90% CL upper limit on signal counts.
- Also allow for exotic backgrounds not expected to be present but that could influence result.

Source Shape Agreement

- Source data was collected for weekly energy calibration
 - Ratio Data/MC also used to reweight PDF shapes
 - Use reweighted PDFs to calculate spectral shape error

Fit to Data

- Simultaneously minimize NLL with respect to rotated energy, standoff distance, and single-site fraction
- Limits are calculated by profiling NLL as a function of signal counts
- Systematic uncertainties are folded into the fit as Gaussian constraints

Mean of source data/simulation	Constraint	Value
residuals	Single-Site Fraction	3.4%
Uncertainties in efficiency of selection cuts	Event Rate Norm.	3.4%
Background model error (a)	Signal-Specific Normalization	a = 16.3% b = 16 counts
+ Spectral shape error (b)	Neutron Capture Fraction	10%
	Radon in LXe	20%

Fit to Data

Both 0v and 2v $\beta\beta$ signal PDFs fit to zero

$$\chi^{\mathbf{2}}_{\mathbf{Red},\mathbf{SS}} = 1.57$$

$$\chi^{\mathbf{2}}_{\mathbf{Red},\mathbf{MS}} = 1.09$$

Results

	EXO-200 Phase-II	PandaX-4T
2vββ (0 ⁺ →0 ⁺)	≥ 2.9 x 10 ²¹ yr	≥ 2.8 x 10 ²² yr
0vββ (0 ⁺ →0 ⁺)	≥ 8.7 x 10 ²³ yr	≥ 3.0 x 10 ²³ yr
0v/2v ββ (0 ⁺ →2 ⁺)	In progress	_

Conclusions

- We report on new world leading results on the 134 Xe $0v\beta\beta$ (0+ \rightarrow 0+) decay
- We also improved on the EXO-200 Phase I measurement for the $2v\beta\beta$ (0⁺ \rightarrow 0⁺) decay of ¹³⁴Xe

- Search for the $\beta\beta$ (0+ \rightarrow 2+) decays in ¹³⁴Xe is in progress
- Tonne scale experiments could reach sensitivities as high as 10^{24} years, with realistic chance of observing the $2v\beta\beta$ (0+ \rightarrow 0+) decay of ¹³⁴Xe

Advertisement: Neutrinoless double beta decay search in Xe - next-generation experiment workshop

Neutrinoless double beta decay search in Xe - next-generation experiment workshop

12-14 November 2025 Montreal

America/Toronto timezone

https://nyx.physics.mcgill.ca/e/XeDBD

Xe-focused 0vββ workshop planned in Montreal on November 12-14, 2025!