Search for the ν -Nucleus Scatterings in the NEON Experiment

Seo Hyun Lee

Korea University of Science and Technology (UST)
Institute for Basic Science (IBS), Center for Underground Physics (CUP)

2025 International Conference on Topics in Astroparticle and Underground Physics

Aug. 27, 2025

Introduction

The NEON Collaboration

- NEON: Neutrino Elastic Scattering Observation with Nal
 - Detection of ν interactions with reactor ν , using NaI(TI) crystal
- ~ 20 collaborators
 - Experts from the COSINE-100 experiment and the NEOS experiment

Introduction

ν-Nucleus Scattering

- Coherent elastic ν -nucleus scattering (CE ν NS)
 - Predicted in 1974, first measurement of CEνNS by COHERENT collaboration, 2017 (Akimov et al., Science 357, 1123–1126 (2017))
 - Stopped pion source, CsI(Na) target
 - Observed by the CONUS+ collaboration, 2025, (Ackermann et al., Nature 643, 1229–1233 (2025))
 - Reactor ν , Ge target
- Reactor ν for CEνNS search with Nal
 - Comparatively large neutrino flux in controlled environment
 - Low ν energy for low recoil energy measurement
 - Understanding of nuclear structure
 - Test for N² dependence
 - · Weinberg angle
 - Reactor monitoring

Introduction

ν-Nucleus Scattering

Dutta et al., Phys. Rev. D 106, 113006 (2022)

- Coherent elastic ν-nucleus scattering (CEνNS)
 - Reactor ν for CEνNS search with Nal
 - Comparatively large neutrino flux in controlled environment
 - Low ν energy for low recoil energy measurement
 - Understanding of nuclear structure
 - Test for N² dependence
 - Weinberg angle
 - · Reactor monitoring
- Incoherent ν-nucleus scattering (IνNS)
 - Possible detection of γ from excited state of the nucleus
 - ²³Na
 - nuclear transition: g.s. $\rightarrow J = 5/2^+$
 - level energy 440 keV
 - 127
 - nuclear transition: g.s. $\rightarrow J = 7/2^+$
 - level energy 57.6 keV

Experimental Site

- Experimental site: Hanbit-6 reactor (Yeonggwang, South Korea)
 - 2.8 GW thermal power
 - Neutrino flux at the tendon gallery $\sim 8.09 \times 10^{12} \text{cm}^{-2} \text{s}^{-1}$
 - Distance from the reactor core: 23.7 m
 - ~ 10 m concrete & rock overburden

Detector of the NEON Experiment

- 6 Nal(TI) crystal detectors, 16.7 kg
 - Relatively large recoil energy for Na
 - Available in large volumes
 - High light yield, controlled background
- Light yield about 24 NPE/keV is stably obtained
 - High light yield compared to other NaI(TI) experiments
 - Upgraded detector encapsulation design after engineering run, optical coupling PMT and crystal without quartz window

Choi et al., Eur. Phys. J. C (2023) 83:226 NEO Encapsulation $--- \chi^2/ndf = 20.5/36$ <u>p</u> 22.5 <u>y</u> 20.0 * NPE: number of photoelectrons $----\chi^2/ndf = 23.6/36$ J.J. Choi *et al.*, 2024 *JINST* 19 P10020 2022-05 2022-07 2022-09 2022-11 2023-01 2023-03 2023-05

Date

Shielding Design

Operational Status of the NEON Experiment

Operation since Apr. 11, 2022 ~ ongoing

Operational Status of the NEON Experiment

- Operation since Apr. 11, 2022 ~ ongoing
- Dataset for analysis (946 days)
 - Reactor-on periods: 723 days
 - Reactor-off periods: 223 days

Physics Prospects in the NEON Experiment

Potential for *v*-Nucleus Scattering Search

R. Sahu et al., Phys. Rev. C 102, 035501 (2020)

- 700 days exposure at reactor-on status assumed
- Neutrino flux: $8.09 \times 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$
- ~ 1290 CEvNS event assumed
 - 2.59 kg Na in the NEON detector
 - ~ 320 counts/kg/year integrated event rate for Sodium from ref.
 - 0.2 keVee threshold,
 10% quenching factor

Physics Prospects in the NEON Experiment

Potential for *v*-Nucleus Scattering Search

R. Sahu et al., Phys. Rev. C 102, 035501 (2020)

- 690 days exposure at reactor-on status assumed
- Neutrino flux: $8.09 \times 10^{12} \text{ cm}^{-2} \text{ s}^{-1}$
- ~ 1290 CEνNS event assumed
- ~ 2690 events of IvNS assumed
 - 14.11 kg I in the NEON detector
 - ~ 123 counts/kg/year integrated event rate for lodine from ref.
 - Observation of 57.6 keV γ from lodine

Event Selection for CEvNS Search

Waveform Simulation

- Waveform simulation
 - Reproduce scintillation signals in the keV to sub-keV energy range
 - Use for pulse-shape discrimination parameter(PSD) development
 - Use for signal training sample for machine learning / deep learning

Choi et al., NIMA 065 (2024) 169489

Validation of simulated waveform w/ PSD parameter

Event Selection for CEvNS Search

Noise Types in the NEON Data

- Type 1 (PMT-induced noise)
 - Short pulses (< 50 ns), fast decaying distribution → easy to be separated
- Type 2 (High energy late-pulse)
 - Dominated in 2 keV. Slowly decaying distribution → hard to be separated from scintillation

Event Selection for CEvNS Search

Deep Learning with ResNet

- Deep learning with non-parameterized waveform shape
 - Used ResNet model for training
- Conducted training focusing 2 noise types
- Noise rejection to ~ 10 counts/kg/days/keV (Efficiency 6 NPE (~ 0.3 keV): about 25 %)

Investigation Around 57.6 keV ROI in the NEON Data

PMT62 200-hr Accumulated Data

- ²¹⁰Pb 49.5 keV peak right next to 57.6 keV, for calibration
- Components with temporal behaviour
 - Cosmogenic components
 - ¹²⁵I ~ 40 keV, 67.25 keV
 - 121mTe ~ 30 keV, ~ 40 keV
 - 126I, ~ 30keV

Time Binned Analysis for the Time-dependent Components

- Background modeling of analysis dataset time binned
 2 months
 - To consider reactor-on/-off period
 - To consider time-dependent components in the NEON data
 - · Cosmogenic components
 - Seasonal variation of ²²²Rn through opened calibration hole

Peaks from cosmogenic components in (on – off) data

RadonEye measurement at NEON experimental site

Expected Signal of IvNS in the NEON Data

- (Reactor-on) (Reactor-off) data analysis at
 40 ~ 80 keV energy region for 57.6 keV signal search
 - Assumption
 - Signal mean at 57.6 keV
 - Cosmogenic peak ~ 67 keV and ~ 40 keV

Expected Signal of IvNS in the NEON Data

NEON Crystal Multiple-hit Energy Spectrum

- (Reactor-on) (Reactor-off) data analysis at
 40 ~ 80 keV energy region for 57.6 keV signal search
 - Assumption
 - Signal mean at 57.6 keV
 - Cosmogenic peak ~ 67 keV and ~ 40 keV
- No signal on crystal multiple-hit energy spectrum
- Improvements through detailed modeling of the on and off data

Summary

- The NEON experiment aims to detect CE ν NS with reactor ν
 - Event selection for CEνNS improvement via deep learning

- Also expanded its search to include IνNS recently
 - Improvement through detailed background modeling
 - Time-binned analysis for time-dependent components in our data

Thank You

Reactor ν Flux at the NEON Experiment

• Neutrino flux at the tendon gallery $\sim 8.09 \times 10^{12} \mathrm{cm}^{-2} \mathrm{s}^{-1}$

Red solid: $I\nu NS$ rate calculated with ν flux at the NEON experimental site

ν-Nucleus Scattering Event Rates in Nal

Differential rates

$$\frac{dR_x}{dT_A} = \mathcal{K} \int_{E_v^{\min}}^{E_v^{\max}} \frac{d\sigma_x}{dT_A} (E_v, T_A) \lambda_v(E_v) dE_v, \quad x = \text{coh, inc,}$$

$$\mathcal{K} = t_{\rm run} \Phi_{\nu} N_{\rm targ}$$

 $\lambda_{\nu}(E_{\nu})$: relevant neutrino energy distribution function characterizing the neutrino source

Cross sections

$$\begin{split} \frac{d\sigma_{\text{coh}}}{dT_A} &= \frac{4G_F^2 m_A}{\pi} (1-a) \left| \sum_{f=n,p} \sqrt{g_{\text{coh}}^f} F_f \left(A_+^f [g_L^f - g_R^f ab(1-b)] + A_-^f g_R^f [1-ab(1-b)] \right) \right|^2 \\ \frac{d\sigma_{\text{inc}}}{dT_A} &= \frac{4G_F^2 m_A}{\pi} \sum_{f=n,p} g_{\text{inc}}^f (1-|F_f|^2) \left[A_+^f \left((g_{L,f} - g_{R,f} ab^2)^2 + g_{R,f}^2 ab^2 (1-a) \right) + A_-^f g_{R,f}^2 (1-a)(1-a+ab^2) \right] \\ a &= \frac{q^2}{a^2} \simeq \frac{T_A}{T_F^{\text{max}}}, \quad b^2 = \frac{m_f^2}{s}. \end{split}$$

Nuclear structure calculation based on the deformed shell model (DSM)

R. Sahu et al., Phys. Rev. C 102, 035501 (2020)

Measured Quenching Factor of Nal(TI)

Waveform Simulation for the NEON Data

Modeled SPE

Waveform simulation with precisely modeled single photon pulse / charge / time distribution

Choi et al., NIMA 065 (2024) 169489

Waveform Simulation for the NEON Data

Degenerating waveform

- To remove SPE shape problem, stronger degeneration criteria applied
- Waveform total charge only saved in cluster-peak position

Seasonal Variation of ²²²Rn

arXiv:2406.06117

- Time-dependent components in the NEON data
 - Seasonal variation of ²²²Rn through opened calibration hole
 - Exposed to the same level of ²²²Rn as the experimental tunnel
 - Dust inside the LS
- Modeling with time-binned dataset, 2 months

Background Components in the NEON Experiment

Internal components measured for the NEO crystals

			⁴⁰ K		²¹⁰ Pb	²³² Th	²³⁸ U		
Crystal	Mass (kg)	Size (inch, $D \times L$)	nat K (ppb)	α Rate (mBq/kg)	²¹⁰ Pb (mBq/kg)	²¹⁶ Po (μBq/kg)	²¹⁸ Po (μBq/kg)	Light yield (NPE/keV)	EPJC (203) 83:226
NEO-1	1.62	3 × 4	50 ± 20	2.16 ± 0.02	1.89 ± 0.26	1.6 ± 0.7	10.6 ± 4.2	20.5 ± 0.9	2, 66 (266) 66:226
NEO-2	1.67	3×4	137 ± 28	7.78 ± 0.03	7.46 ± 0.73	< 59.8	< 57.2	19.3 ± 0.9	
NEO-3	1.67	3×4	46 ± 20	0.56 ± 0.01	0.53 ± 0.13	< 3.6	< 11.2	21.8 ± 0.9	
NEO-4	3.35	3×8	22 ± 11	0.76 ± 0.01	0.69 ± 0.18	1.6 ± 0.8	< 3.3	22.4 ± 1.0	
NEO-5	3.35	3×8	< 29	0.76 ± 0.01	0.68 ± 0.17	1.6 ± 0.5	2.9 ± 1.6	21.8 ± 0.9	
NEO-6	1.65	3×4	< 38	0.94 ± 0.01	0.88 ± 0.21	5.8 ± 1.3	11.0 ± 3.3	21.7 ± 1.0	
COSINE-100(C6)	12.5	4.8 × 11.8	17 ± 3	1.52 ± 0.04	1.46 ± 0.07	2.5 ± 0.8	< 0.25	14.6 ± 1.5	

 Cosmogenic components studied on the COSINE-100 experiment

Astropart. Phys. (2020) 115:102390

Simulations for the Background Modeling

Comparison of the Simulation Result by the PMT Materials (²³⁸U Generated)

- Updates on the detector simulation for unexplained components
 - Explanation around non-temporal 32 keV peak component
 - Ba X-ray ~ 32 keV, from PMT glass
 - Optimization of simulation on material composition is required