

Università degli Studi di Padova

Istituto Nazionale di Fisica Nucleare

Large Enriched
Germanium Experiment
for Neutrinoless ββ Decay

Search for $0\nu\beta\beta$ in 76 Ge with the LEGEND experiment at Gran Sasso

on behalf of the LEGEND Collaboration

Alberto Garfagnini, TAUP 2025, Aug 25, 2025, 西昌, China

Double β decay

• It's a nuclear transition, with 2 neutrons decaying into 2 protons

$$(A,Z) \rightarrow (A, Z+2) + 2 e^{-} + ...$$

Double β decay

• It's a nuclear transition, with 2 neutrons decaying into 2 protons

$$(A,Z) \rightarrow (A, Z+2) + 2 e^{-} + ...$$

- it's a second order process, allowed in the Standard Model of Particle Physics
- first suggested by Goeppert-Mayer in 1935 [M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512]

$$(A,Z) \rightarrow (A, Z+2) + 2 e^{-} + 2 \overline{v_e}$$

- Measured in several isotopes
- $T_{1/2}^{2v}$ in the range $10^{19} 10^{24}$ yr

Double β decay

(2)

• It's a nuclear transition, with 2 neutrons decaying into 2 protons

$$(A,Z) \rightarrow (A, Z+2) + 2 e^{-} + ...$$

- Foreseen by many extensions of the Standard Model of Particle Physics

$$(A,Z) \to (A, Z+2) + 2 e^{-}$$

Never observed so far, but allowed in several isotopes

$$\rightarrow T_{1/2}^{0v} > O(10^{26}) \text{ yr}$$

Double-β decay experimental signature

Double-\beta decay experimental signature

Why germanium?

- A "golden" isotope does not exist ...
- ... mix of theoretical & experimental preferences: costs, energy resolution, background level, scalability (liquids, gas, crystals)

- $Q_{\beta\beta}$ = 2039.06 keV: less processes can mimic the $0\nu\beta\beta$ signal
- Natural abundance is low (~8%): enrichment is required (and up to ~92% is achievable)

The LEGEND collaboration

Large Enriched Germanium Experiment for Neutrinoless $\beta\beta$ decay

• 13 countries, 60 institutions, ~ 300 members

"The collaboration aims to develop a 76Ge-based $0\nu\beta\beta$ decay program with a discovery potential $T_{1/2} > 10^{28}$ yr using existing resources to expedite physics results"

LEGEND: a phased approach

LEGEND-200

- Up to 200 kg of ^{enr}Ge detectors
- Uses GERDA infrastructure in Hall A, LNGS
- Operational since 2023
- Goals:
 - 1 ton*yr of exposure
 - Background ~ 2×10^{-4} cts / (keV_{*}kg_{*}yr)
 - $T_{1/2}^{0\nu} > 10^{27} \,\mathrm{yr} \ \mapsto \ m_{\beta\beta} \sim 30 70 \,\mathrm{meV}$

LEGEND: a phased approach

LEGEND-200

- Up to 200 kg of enrGe detectors
- Uses GERDA infrastructure in Hall A, LNGS
- Operational since 2023
- Goals:
 - 1 ton*yr of exposure
 - Background ~ 2 x 10⁻⁴ cts / (keV_{*}kg_{*}yr)
 - $T_{1/2}^{0\nu} > 10^{27} \,\mathrm{yr} \ \mapsto \ m_{\beta\beta} \sim 30 70 \,\mathrm{meV}$

LEGEND-1000

- 1000 kg of ^{enr}Ge detectors
- Uses new infrastructure in Hall C, LNGS
- Goals:
 - 10 ton*yr of exposure
 - Background ~ 10⁻⁵ cts / (keV_{*}kg_{*}yr)
 - $T_{1/2}^{0\nu} > 10^{28} \, \mathrm{yr} \ \mapsto \ m_{\beta\beta} \sim 10 20 \, \mathrm{meV}$

LEGEND-200 experimental setup

LEGEND-200 experimental setup

Liquid Argon instrumentation:

inner & outer fiber barrels with silicon photomultiplier (SiPM) readout at top & bottom

Source funnels for ²²⁸Th calibration sources

LEGEND-200 experimental setup

HPGe readout electronics

based on MJD Low Mass Front-End and GERDA charge sensitive amplifier (CC4)

Detector mount: underground copper, optically active PEN plates & radiopure PEI

inner & outer fiber barrels with silicon photomultiplier (SiPM) readout at top & bottom

Larger mass (inverted coaxial)
HPGe detectors with up to 4 kg

Source funnels for ²²⁸Th calibration sources

LEGEND enrGe diodes

- Ge diodes: p+ (implanted B), n+ (diffused Li), passivated groove
- HPGe detectors have best energy resolution at $Q_{\beta\beta}$ (0.12% FWHM) and best background level in the field (10⁻⁴ cts/(keV kg yr))
- LEGEND-200 is currently using 4 HPGe detector types, from previous experiments and newly produced Inverted Coaxial (IC) geometry)
- Different geometries single detector mass: 0.7 kg 4 kg

Background in LEGEND

Background rejection: in addition to careful material selection and handling during installation, Liquid Argon instrumentation and Muon Veto + Pulse Shape Discrimination

Bkg reduction: LAr Instrumentation

Use LAr scintillation light (128 nm VUV photons)
Captured by WLS fibers and readout by SiPM
System successfully operated in GERDA, now with higher light yield and less shadowing

⁴⁰K EC process followed by gamma does not show coincidence with Lar → barely suppressed
 ⁴²K beta followed by 1525 keV gamma has LAr coincidence → strongly suppressed

Bkg reduction: Pulse Shape Analysis

Low A/E

Pulse shape discrimination (PSD): based on the signal risetime and amplitude

Bkg reduction: Pulse Shape Analysis

Pulse shape discrimination (PSD): based on the signal risetime and amplitude

Energy scale and resolution

- Weekly energy calibrations using ²²⁸Th sources
- Overall resolution of 0.1 0.2% FWHM at Q_{ββ}
- Very stable energy scale energy bias 0.2 \pm 0.3 keV at $Q_{\beta\beta}$

LEGEND-200 energy spectrum

Blinded analysis in $Q_{\beta\beta}$ ±25 keV

Spectrum after:

- data cleaning \rightarrow 95-99% survival after removal of unphysical events
- muon veto \rightarrow 2 events removed at $Q_{\beta\beta}$
- multiplicity cut \rightarrow 26% events removed at $Q_{\beta\beta}$
- $T_{1/2}^{2v}$ = (2.022 ± 0.018 stat ± 0.038 syst) × 10²¹ yr [GERDA Collab., PRL 131, 142501 (2023)]

LEGEND-200 background model

- Bayesian background model using the full dataset + extra 10.2 kg·yr of special runs
- Decomposition of the full-range energy spectrum: no unexpected background components
- ²²⁸Th underprediction in physics data compared to radioassay predictions
 - Tested different ²²⁸Th locations via the background model: no hotspots or asymmetries
 - Ongoing screening campaign & re-evaluation of cleaning techniques
 - → This background is efficiently suppressed by analysis cuts

Energy spectrum after PSD

- Cut acting on A/E = max(current) / energy
- Late charge cut for PPC (large passivated surface)
- Neural-network methods developed for semi-coaxial

~60% suppression of Compton MSE at $Q_{\beta\beta}$

Energy spectrum after PSD & LAr cuts

Cuts applied: data cleaning + muon veto + multiplicity cut

- Pulse Shape Discrimination
- LAr anti-coincidence:
- LAr ββ decay signal acceptance of ~93%
 - Strongly suppresses remnant Compton background
 - Pure " $2\nu\beta\beta$ " behavior observed at lower energies

Energy spectrum after PSD & Lar cuts

Energy spectrum after PSD & Lar cuts

LEGEND 2νββ results

- Frequentist and Bayesian $0\nu\beta\beta$ analysis: no signal evidence
- BI: $0.5^{+0.3}$ -0.2 cts/(keV t yr)
- Observed $T_{1/2} > 0.5 \times 10^{26}$ yr @ 90% CL/CI
- Sensitivity $T_{1/2}$: 1.0 × 10²⁶ yr
- 1 event at 1.4 σ from $Q_{\beta\beta}$ weakens the observed limit

LEGEND 2vββ results

- Frequentist and Bayesian $0\nu\beta\beta$ analysis: no signal evidence
- BI: $0.5^{+0.3}$ -0.2 cts/(keV t yr)
- Observed T_{1/2} > 0.5 × 10²⁶ yr @ 90% CL/CI
- Sensitivity $T_{1/2}$: 1.0 × 10²⁶ yr
- 1 event at 1.4 σ from $Q_{\beta\beta}$ weakens the observed limit

Combined fit of GERDA(*) + MJD (**) + LEGEND-200

- Frequentist and Bayesian $0\nu\beta\beta$ analysis: no signal evidence
- Observed $T_{1/2} > 1.9 \times 10^{26} \text{ yr } @ 90\% \text{ CL/Cl}$
- World-leading sensitivity $T_{1/2} = 2.8 \times 10^{26} \text{ yr}$
- paper [arXiv:2505:10440] submitted to PRL

- (*) GERDA, PRL 125 252502 (2020)
- (**) MJD, PRL 130 062501 (2023)

Limits on $m_{\beta\beta}$

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} (Q_{\beta\beta}, Z) |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2 \sum_{i} U_{ei}^2 m_i$$
Nuclear
Matrix
Effective Majorana
Element
neutrino mass

- Assumption: light Majorana neutrino exchange
- Range of phenomenological NME (⁷⁶Ge: 2.35 6.34)

- Uncertainty-quantified NME (76Ge: 2.6_{-1.36}+1.28)
- Bayesian ab-initio calculation with quenching and short-range physics [Belley et al., PRL 132, 182502 (2024)]

mββ<316 meV @ 90% CI

 A new era of uncertainty-quantified NME - however, uncertainties remain significant

LEGEND-1000

Capable of unambiguous Onbb discovery with just a handful of counts at Q_{BB} !

Neutron moderator: suppress background

Reentrant tube with

underground argon

from cosmic induced neutrons

Detector strings covered by individual WLS fiber curtain

Reduce background x20 times from LEGEND-200:

- Lower background materials (underground Argon, ASIC electronics, ...)
- Only IC detectors
- Improved material handling
- Improved light collection

Lock system: individual detector

L1000 pre-Conceptual Design Report

Funding request procedure for LEGEND-1000 has started both in US and Europe.

Summary and Outlook

First LEGEND-200 results [arXiv2505.10440, submitted to PRL]

- Stable operations and excellent performance with 142 kg of enrGe
- First LEGEND-200 0vββ results based on 61 kg·yr
- Combined fit with GERDA and MJD set T_{1/2} > 1.9 × 10²⁶ yr @ 90% CL/CI
- World-leading sensitivity of 2.8×10^{26} yr
- New effective Majorana neutrino mass $m_{\beta\beta}$ <75-200 meV @ 90% CL

Current/Future steps

- Data taking will restart very soon
 - →with enhanced detector array after deploying additional large-mass ICPC detectors
 - →further background reduction by refining surface treatments of nearby components
- LEGEND-1000 preparations underway at LNGS

50+ years of $\beta\beta$ decay searches in ⁷⁶Ge

Plot from: Luigi Pertoldi

Backup

LEGEND-1000 funding status

Germany:

- **MPG** approved funding for cryostat
- BMFTR Research Infrastructure application submitted and prioritized in the BMFTR RI Roadmap DOE:
- Review for the Critical Decision-1 (CD1) → Nov 2025
- CD3a phase → 2026

NSF: Two proposals.

- "Design of the NSF LEGEND-1000 Project", \$2,744k submitted to NSF on Dec. 18, 2024 → APPROVED
- "Research Infrastructure: LEGEND-NSF Construction Proposal" MREFC proposal for \$115 M submitted on Feb. 19, 2025. Proposed start date of MREFC construction FY 2027

Italy:

- CDR submitted in 2024
- TDR-Infrastructure (@LNGS) in preparation (to be submitted in October 2025).
- TDR-Detector → 2026

UK application in preparation

Poland received initial funding, additional funding expected

Switzerland received initial funding, additional funding expected