

Status and prospects of REactor neutrino COherent scattering Detection Experiment (RECODE)

WANG Yufeng

Tsinghua University

Coherent Elastic Neutrino-Nucleus Sacttering (CEVNS)

Neutrinos interact with nucleus as a single particle

- Dominant process for $E_{\nu} \lesssim 50 \mathrm{MeV}$
- Large cross section (10⁻¹⁶ barn) and low recoil energy (keV)

$$\frac{d\sigma}{dE_R} = \frac{G_f^2}{4\pi} \left[N - \left(1 - 4\sin^2\theta_W \right) Z \right]^2 F^2(q) m_N \left(1 - \frac{m_N E_R}{E_v^2} \right)$$

Significance of CEvNS

- ightharpoonup Verification of Parameters in the Standard Model (e.g. Weinberg angle $oldsymbol{ heta}_W$)
- Physics Contributions Beyond Standard-Model (BSM)

CEVNS detection by Germanium

■ Advantage of Germanium detector in CEvNS detection

- > Relavant m_N and R_N for CEvNS interaction
- > Low energy threshold and better resolution

$$\frac{d\sigma}{dE_R} = \frac{G_f^2}{4\pi} \left[N - \left(1 - 4\sin^2\theta_W \right) Z \right]^2 F^2(q) m_N \left(1 - \frac{m_N E_R}{E_v^2} \right)$$

CDEX: using PPC-Ge Detectors for Dark Matter Detection

CDEX-10 bkg spectrum@CJPL, ~2 cpkkd@2keV, threshold 160 eVee

RECODE

■ RECODE (REactor neutrino COherent scattering Detection Experiment) with PPCGe detectors

- For commercial NPP, operation cycle (ON) >> maintenance period (OFF), resulting in large statistical uncertainty in OFF data
- Joint measurement (Far Site + Near Site) and analysis can reduce systematical uncertainty, but requires well bkg understanding

Project goals:

- Two Ge arrays (Far Site_22m + Near Site_11m / Very Near Site_7m, ~10kg in total)
- Energy threshold ~1 keVnr (~160eVee)

RECODE Location

Sanmen Nuclear Power Plant (AP1000) @ Zhejiang, China

■Thermal power 3.4 GWth, ~22m /11m /7m from the core

■ Neutrino flux > 1.4×10^{13} cm⁻²s⁻¹

RECODE Location

- In the first phase, it will be carried out at the Far Site (~22m) and Near Site (~11m);
- The Very Near Site (~7m) serve as an option for future detector debugging after long-term stable operation;
- No entry is allowed during the 18-month operation period, and reactor neutron background needs to be considered;
- The equivalent water depth coverage thickness at each site is being evaluated;

Distance to core	Thermal power Neutrino Flu	
FS ~ 22m	3.4GWth	1.4*10 ¹³ v/cm ² /s
NS ~ 11m	3.4GWth	5.6*10 ¹³ v/cm ² /s
VNS ~ 7m	3.4GWth	1.4*10 ¹⁴ v/cm ² /s

RECODE Location

RECODE Detector

Near Site: EC-PCGe

- ➤ Electrical cooled HPGe (E1)
- **Crystal mass: 500g**
- > No need to regularly replenish liquid nitrogen
- Good long-term stability

- Liquid nitrogen cooled cold-tip detector (CDEX-1B)
- Crystal mass: 1008g
- > Further understanding to the detector response
- **Good long-term stability**

Shielding Design

- Shielding material and geometric optimized by Geant4 simulation
- Shielding size: 1m(W)*1m(L)*1.1m(H)
- **■** From outer to inner:
 - ✓ Plastic scintillator muon veto (3 cm)
 - ✓ Aluminium Structure (4 cm)
 - ✓ Acrylic box (0.8 cm), N₂ purging to suppress radon bkg
 - ✓ Polyethylene (5 cm)
 - ✓ Lead (10 cm)
 - ✓ Copper (5 cm)
 - ✓ Polyethylene (~15 cm)
 - ✓ Nal anti-Compton Detector (5 cm)

Structure model: EC-PCGe

Detector test: outside the reactor containment

- Test for detector stability, shielding performance and the muon veto system
- Open space within the Sanmen NPP, >60 meters away from the reactor core;
- Two detectors: Same situation & cross-checking;

Diagram of the 40-ft container outside the containment of Sanmen NPP

Detector test: EC-PCGe

■ Construction: 2025.04

■ Stable Run: 2025.04-2025.06 (25 kg•day exposure)

■ CAEN V1725 for digitalization (16 channel used)

EC-PCGe system

Muon detector installed
in the container

DAQ system

Detector test: LN-PCGe

■ Construction: 2025.05

■ Stable Run: 2025.05-2025.07 (28 kg•day exposure)

■ CAEN V1725 for digitalization (8 channel used)

LNC-PCGe system No Muon detector in the container

DAQ system

Detector test: Trigger Rate check

- Trigger rate reveal the stablity of detector
- Random trigger efficiency: RT num detected/generated
- Inhibit trigger: reveal the leakage current level
- Germanium self trigger: Affected by environmental noise*
 - *Effectively rejected by data filter
 - *Time check&cut after filter

RT efficiency&Live time @EC-PCGe

Detector test: Data Analysis

- Time Window select for coincidence event
- Accidental coincidence determined by time window, calculated&corrected by the RT events

PNcut@EC-PCGe

Energy threshold:

0.22 keV (50%) for EC-PCGe 0.21 keV (50%) for LNC-PCGe

Coincidence event selection @EC-PCGe

- Data filter including pedcut, mincut, energycut and PNcut
- PNcut determines the threshold, Fitted by the ACT survival rate after PNcut

Calibration & Resolution

Energy Calibration

- ➤ Low-energy region: Characteristic X-ray peaks from cosmogenic radionuclides
- High-energy region: Full-energy peaks of gamma rays

■ Energy Resolution

- Gauss fit by CERN RooFit (unbinned data & Maximum likelihood)
- Resolution (σ) at 10.37 keV: 79.2 eV (EC-PCGe) & 73.4 eV (LNC-PCGe)

Resolution

Calibration (0-12keV)

@EC-PCGe

Calibration (0-700keV)

@EC-PCGe

Spectrum analyse

- Passive/Active Shielding suppress the bkg by 2/1 order of magnitude
- Anti-coincidence capability of NaI detector outperforms that of plastic scintillator (CR-veto) detectors;
- In addition to CR-veto detectors, NaI is also necessary to further reduce the bkg level;
- Comparisons with other experiments: the shielding performance met expectations without additional concrete coverage.

vGeN: CPC 49, 053004 (2025)

Spectrum analyse-2

- The experimental data from two detectors (with different crystal sizes) were compared;
- It was found that larger crystal sizes lead to lower background event rates. This is due to the reduction in the number of muon events per unit mass/crystal volume;

Background understand—Simulation

- Geant4 Monte Carlo simulation, with detector&shield geometry established;
- Local cosmic ray information gained by CRY software;
- Flux of μ : 104.3/s/ m^2 , n:13.3/s/ m^2 , Direction mainly from the sky.

Simulation spectrum

- Simulation spectrum fits pretty well with experimental spectrum, so as the anti-coincidence events;
- In ROI ([0.16-0.5] keV), μ -induced bkg is 2 times than n-induced bkg;
- Anti-coincidence is more effective to μ-induced bkg, resulting a neutron domination in vetoed bkg

Bkg level (cpkkd) @[0.16-0.5] keV	μ-induced bkg	n-induced bkg	Total	neutron proportion
Passive shield	1230.33±84.89	674.87±39.17	1905.20±93.50	35.42%
ACV	101.08±23.24	171.92±19.48	273.00±30.32	62.97%
CRV	361.68±45.33	605.37±37.07	967.05±58.56	62.60%
ACV+CRV	63.18±18.04	160.33±18.79	223.51±26.05	71.73%

Summary

- RECODE, located at the Sanmen NPP in Zhejiang, China, uses PCGe detectors to jointly measure the reactor neutrino CEvNS at multiple experimental sites;
- RECODE has finished the first ground test, the performance of detector and shielding met our expectation;
- Simulations are proceeded at the same time, helping us understand the background;
- The EC PCGe will enter the containment in October. By then, the platform outside the containment (Far-Site) will also be in place;
- Upgrades of EC PCGe (70X70mm, 1430g) from G3 to G4 is underway (by end of year);

Thank you!