

Calibration of 20-inch Photomultiplier Tubes in JUNO

Yaoguang Wang
(On behalf of JUNO Collaboration)
Shandong University, China, wangyaoguang@sdu.edu.cn

Introduction

- Jiangmen Underground Neutrino Observatory (JUNO) -- world's largest liquid scintillator detector^[1]
 - 20 kton liquid scintillator
 - 17,612 20-inch photomultiplier tubes (PMTs)
 - 12,612 MCP-PMT manufactured by Northern Night Vision Technology Co. (NNVT)
 - 5,000 dynode-PMT manufactured by Hamamatsu Photonics K.K. (HPK)
 - 25,600 3-inch PMTs manufactured by Hainan Zhanchuang Photonics Technology Co. (HZC)

■ Multiple-purpose neutrino detector

- Reactor/earth/atmospheric/solar/supernova neutrinos/new physics/...
- Neutrino mass ordering/precision measurement of oscillation parameters/B8 solar neutrino/core-collapse supernova/diffuse supernova neutrino background/0nbb/...

■ High requirements on detector performance

- Energy scale uncertainty <1%
- Energy resolution better than 3%@1 MeV

■ Precise calibration of PMT charge response is a prerequisite for understanding the JUNO detector

- PMT gain: determination of detector light yield
- Single photoelectron (SPE) charge PDF: critical input for energy reconstruction

HPK dynode-PMT

NNVT MCP-PMT

Data-taking & WF Processing

- Laser/radioactive sources deployed into central detector with the Automatic Calibration Unit (ACU) system^[2]
 - 1D scan along z-axis, various light intensities
- Raw waveform processed with COTI (Consecutive 5 points Over Threshold Integral) algorithm to extract charge & time information
 - Waveforms with extremely low charge may be undetected → COTI inefficiency
 - Modeled with an error function
- The charge of each waveform obtained by summing over all the reconstructed charges within the laser-on time window

Models & Results

- The charge spectra of both HPK dynode-PMT & NNVT MCP-PMT do not follow simple Gaussian distribution
 - HPK dynode-PMT: "small component" at low charge region
 - NNVT MCP-PMT: "long tail" at high charge region
- **■** Two gain definitions introduced:
 - Peak gain (Gp): peak position of the SPE charge spectrum
 - Mean gain (Gm): expectation value of the SPE charge spectrum
- Two different SPE charge response models constructed for different PMTs
 - HPK dynode-PMT: double Gaussian model
 - One for normally amplified PE, the other for insufficiently amplified PE
 - NNVT MCP-PMT: recursive model
 - PEs may directly enter the micro-channel, being amplified
 - It may also hit on MCP surface, producing multiple secondary electrons
 - Secondary electron can knock out more secondary electrons recursively
- **FFT-based numerical method** used for convolution calculation^[3]
 - Flexible to deal with an arbitrarily complex SPE charge response model

HPK dynode-PMT: SPE model in "charge" domain
$$S(q) = w \cdot G(Q_1, \sigma_1) + (1 - w) \cdot G(f_Q \cdot Q_1, f_S \cdot \sigma_1)$$

Conclusions

The JUNO experiment will enter the stable data-taking phase immediately, aiming to address fundamental questions in neutrino physics. The physics goal of JUNO necessitates an energy resolution better than 3% @1 MeV and energy uncertainty <1%, both of which impose rigorous calibration requirements on PMT charge response. This poster outlines the calibration procedure for the 20-inch PMTs in JUNO, including calibration strategy, waveform processing, and fitting methods. Preliminary results demonstrate good agreement between data and model.

Bibliography

- 1. "JUNO physics and detector", JUNO collaboration, Prog.Part.Nucl.Phys. 123 (2022) 103927, arXiv:2104.02565
- 2. "Calibration strategy of the JUNO experiment", JUNO collaboration, JHEP 03 (2021) 004, arXiv:2011.06405
- 3. "A fast numerical method for photomultiplier calibration", L. N. Kalousis, J. P. A. M. de André, E. Baussan, and M. Dracos, JINST 15 P03023 (2020), arXiv:1911.06220