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Calibration of 20-inch Photomultiplier Tubes in JUNO
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Introduction

B Jiangmen Underground Neutrino Observatory (JUNQO) -- world’s largest liquid

scintillator detector!ll

* 20 kton liquid scintillator
* 17,612 20-inch photomultiplier tubes (PMTs)

12,612 MCP-PMT manufactured by Northern Night Vision Technology Co. (NNVT)
* 5,000 dynode-PMT manufactured by Hamamatsu Photonics K.K. (HPK)
e 25,600 3-inch PMTs manufactured by Hainan Zhanchuang Photonics Technology Co. (HZC)

B Multiple-purpose neutrino detector

* Reactor/earth/atmospheric/solar/supernova neutrinos/new physics/...

* Neutrino mass ordering/precision measurement of oscillation parameters/B8 solar

neutrino/core-collapse supernova/diffuse supernova neutrino background/ /...

B High requirements on detector performance

* Energy scale uncertainty <1%
* Energy resolution better than 3% @1 MeV

B Precise calibration of PMT charge response is a prerequisite for understanding

the JUNO detector
 PMT gain: determination of detector light yield

* Single photoelectron (SPE) charge PDF: critical input for energy reconstruction
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Data-taking & WF Processing

B Laser/radioactive sources deployed into central detector with the Automatic

Calibration Unit (ACU) system!?!

* 1D scan along z-axis, various light intensities

B Raw waveform processed with COTI (Consecutive S points Over Threshold

Integral) algorithm to extract charge & time information

* Waveforms with extremely low charge may be undetected > COTI inefficiency

e Modeled with an error function

B The charge of each waveform obtained by summing over all the reconstructed

charges within the laser-on time window
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Threshold

5 ns continuously over threshold

to begin a pulse

3 ns continuously below threshold

to end a pulse

COTI efficiency modeled with an

error function:
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Models & Results

B The charge spectra of both HPK dynode-PMT & NNVT MCP-PMT do

not follow simple Gaussian distribution
 HPK dynode-PMT: “small component™ at low charge region
* NNVT MCP-PMT: “long tail” at high charge region
B Two gain definitions introduced:
* Peak gain (Gp): peak position of the SPE charge spectrum
 Mean gain (Gm): expectation value of the SPE charge spectrum
B Two different SPE charge response models constructed for different PMTs

 HPK dynode-PMT: double Gaussian model

* One for normally amplified PE, the other for insufficiently amplified PE
* NNVT MCP-PMT: recursive model

* PEs may directly enter the micro-channel, being amplified

* It may also hit on MCP surface, producing multiple secondary electrons

* Secondary electron can knock out more secondary electrons recursively

B FFT-based numerical method used for convolution calculation!3!

* Flexible to deal with an arbitrarily complex SPE charge response model

HPK dynode-PMT: SPE model in “charge” domain

S(@) =w-G6(Q,01) +(1—w) - G(foQufs 01)

NNVT MCP-PMT: SPE model in “frequency” domain
S(w)=w-G(w; Q1,07 + (1 — w)el1l5@)-1]
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Conclusions

The JUNO experiment will enter the stable data-taking phase immediately, aiming
to address fundamental questions 1n neutrino physics. The physics goal of JUNO
necessitates an energy resolution better than 3% @1 MeV and energy uncertainty
<1%, both of which impose rigorous calibration requirements on PMT charge
response. This poster outlines the calibration procedure for the 20-inch PMTs in
JUNO, including calibration strategy, waveform processing, and fitting methods.

Preliminary results demonstrate good agreement between data and model.
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