

AXEL: High-pressure xenon gas TPC for neutrinoless double beta decay search

Junya HIKIDA, Kyoto University (Japan) for the AXEL collaboration

25th August. 2025, TAUP 2025

- Neutrinoless double beta decay
- AXEL experiment
- Performance demonstration of 180L-size prototype
- R&D for 1000L-size detector construction

• Summary

• Neutrinoless double beta decay

• AXEL experiment

• Performance demonstration of 180L-size prototype

• R&D for 1000L-size detector construction

Summary

anti-neutrino

neutrino

Neutrinoless double beta decay $(0\nu\beta\beta)$

 $0\nu\beta\beta$ can occur if <u>neutrino</u> is the same as anti-neutrino called **Majorana** particle

Majorana nature of neutrino may be the origin of

> Too small mass of neutrino

n

n

➤ Matter-antimatter asymmetry of the universe

Requirements for $0\nu\beta\beta$ search

 $0\nu\beta\beta$ is very rare: $T_{1/2}^{0\nu\beta\beta} > 3.8 \times 10^{26} \ years (90 \% \text{C.L.})_{[1]} \text{ for } ^{136}\text{Xe}$

- → Large mass and low background are required
- To realize large mass, scalable detector is desirable
- To realize low background $0\nu\beta\beta$ search,
- > High energy resolution
- > Distinction of environmental background

Xe gas TPC can meet all these requirements!

[1]S.Abe et al., arXiv:2406.11438

• Neutrinoless double beta decay

• AXEL experiment

• Performance demonstration of 180L-size prototype

• R&D for 1000L-size detector construction

Summary

AXEL ~A Xenon ElectroLuminescence

High-pressure Xe gas Time Projection Chamber

3D tracking for background rejection $0\nu\beta\beta$ (2458 keV) same start point 0.6 z 2 blob Simulated tracks Photoabsorption of γ -ray (2615 keV) blob 0.2 0.4 **blob: stopping point of charged particle

ELCC ~Electroluminescence Light Correction Cell

- Using electroluminescence (EL) process to suppress gain fluctuation
- → High energy resolution
- Pixelated structure → Tracking
- Modular structure → Easy extension

HV can be adjusted module by module → Good for stable operation
 → Poster presentation by H.Sasaki

Basic structure of a ELCC module

Detection principle of ELCC

Road map of AXEL experiment

Estimated sensitivity (90% C.L.) $T_{1/2} > 2.18 \times 10^{27} \ years$ by 10-years operation

10-ton detector

1-ton detector

140-kg detector

1000L detector (2022-)

- $-\sim 20 \text{ kg Xe}$
- $0\nu\beta\beta$ search

@Kamioka underground

180L prototype (2018-)

- -~4.5 kg Xe
- Scalable structure
- R&D of components

10L prototype (2014-2018)

- -~50 g Xe
- ELCC proof of principle

• Neutrinoless double beta decay

• AXEL experiment

• Performance demonstration of 180L-size prototype

• R&D for 1000L-size

Summary of the latest results (published in May 2025) https://doi.org/10.1093/ptep/ptaf066

Summary

Overview of 180L prototype

Cockcroft-Walton generator

Generate high DC voltage (>30 kV) from low AC input (\sim 1 kV_{pp})

→ No necessity of feedthrough for high pressure and ultra-high voltage

Achievements

- 35.3 kV in Xe gas at 6.0 bar
- Negligible noise effect to MPPC waveform

40-step CW generator in 180L prototype

First demonstration for TPC in the World!

Energy spectrum

- RI source: Thorium-doped tungsten rods (γ -ray of Th series)
- EL field = 2.7 kV/cm/bar
- Drift field = 90 V/cm/bar
- 40 days operation

Energy resolution

- FWHM resolution @2615 keV: (0.67 \pm 0.08) %
- Extrapolated FWHM resolution @Q-value (2458 keV)

$$a\sqrt{E}$$
: (0.68±0.01) %, $a\sqrt{E+bE^2}$: (0.79±0.08) %

→ Better than 1 % FWHM resolution around Q-value

 \times the interpolation was performed using only the data points corresponding to photoabsorption events of γ -rays (black dots)

Breakdown of resolution @2615 keV

Initial ionization (inevitable)	0.25 % Due to low Scinti. det. efficiency
z mis-reconstruction	0.24% \rightarrow Developing new detector
Fluctuation of the EL generation and detection	0.20 % Limited by stat. of EL photon
Error in EL gain correction	0.18 %
Error in time variation correction	0.18 % Dovoloping now correction
Recombination	0.17 % Developing new correction methods
Variation in time bin of time variation correction	0.12 % → Expect less than 0.1 %
Offset of the baseline	≦0.11 % Can be improved with
Error in z dependence correction	≤0.06 % higher drift field (100 V/cm/bar) by more discharge resistive
Accuracy of the MPPC recovery time	≦0.03 % structure
Fluctuation of the attachment	≦ 0.02 %
Estimation total	(0.52-0.54)% Research on additional
Data total	$(0.67 \pm 0.08) \%$ contributions is ongoing!

[&]quot;Fluctuation of the MPPC nonlinearity" $(0.18\% @ 1.8 \text{ MeV}_{[2]})$ is being evaluated [2]M.Yoshida et al., PTEP, 2024(1), 013H01 (2024)

3D track reconstruction (Real data)

Measured track around 1593 keV (Double escape, i.e. e^+e^- creation)

Measured track around 2615 keV (Photoabsorption of γ-ray from ²⁰⁸Tl)

Machine learning (ML)

- Distinguish background tracks by track pattern with ML
- Checked the performance using measured real tracks around 2615 keV
- → Signal likelihood of real data matches that of simulated tracks,

considering real-data veto channels Examples of misclassified events →Some background events take high signal likelihood Signal likelihood distribution -150 -100 ₋₅₀ -150 -100 -50 X[mm] 50 x[mm] 150 -150 100 ba sim veto 10^{-1} 0.14proportion 0.12 bg sim veto 0.10 0.08 zoom 10^{-3} 0.06 0.04 0.8 1.0 0.0 0.2 0.6 Signal Likelihood 0.900 0.925 0.950 0.975 Signal Likelihood

Richardson-Lucy deconvolution

- Applied on Richardson-Lucy deconvolution_[3] to obtain precise tracks before diffusion
 - → Expect to improve ML selection using deconvoluted tracks

[3]L. B. Lucy, Astronomical Journal, Vol. 79, p. 745 (1974)

• Neutrinoless double beta decay

• AXEL experiment

• Performance demonstration of 180L-size prototype

• R&D for 1000L-size detector construction

Summary

1000L detector project

Project objectives

Data taking is planned from 2026

- First $0\nu\beta\beta$ search with AXEL detector
- Demonstration of great background rejection ability

R&D components

- ELCC module with large-area SiPM
- Discharge-resistive ELCC
- Readout electronics
- Cockcroft-Walton generation
- Scintillation detector
 - → Poster presentation by <u>S.Urano</u>
- Low-radioactivity field cage
 - → Poster presentation by <u>H.Sasaki</u>
- etc

ELCC module with large-area SiPM

- 64 channels in a module
- Round-shape (ϕ 4.7 mm) MPPC with larger detection area
- \rightarrow Increase statistics of EL photon % Diameter of ELCC holes: $\phi 4.5$ mm
- Mount the MPPC chip directly on flexible printed circuit (FPC)
- → Remove ceramic package containing a lot of RI sources

ELCC

Discharge-resistive ELCC

- Creeping discharge on ELCC holes disturbs stable operation at target EL field (3.0 kV/cm/bar)
- To prevent the discharge, develop the structure with a step around each hole
- → Target EL field operation was achieved in Xe gas at 6.1 bar

Successfully readout

ch40:lteration\$ ((Entry\$==0) & (Iteration\$<200)

the dark current signal

Readout electronics

• 64 ch/board, 5 MS/s for EL signal readout, multiplexed 40 MS/s high gain for 1 p.e. calibration

- Adjust bias voltage of each MPPC to align gain
- DC coupling to avoid waveform distortion
- Input impedance is changed from 50 Ω to 10 Ω to suppress MPPC nonlinearity effect

Readout electronics for 64ch-ELCC unit

Readout circuit

Cockcroft-Walton generation

- Design value: 76.4 kV
- Develop high-power AC power supply to increase efficiency of CW output
- → 76 kV achieved in atmosphere (input: 1.8 kV_{pp} , 13 kHz)
- Need to suppress voltage drop by ripple
- → Symmetrical CW generator_[4]

Self-built
AC power supply →

Function generator

• Neutrinoless double beta decay

• AXEL experiment

• Performance demonstration of 180L-size prototype

• R&D for 1000L-size detector construction

• Summary

Summary

- AXEL aims to search for $0\nu\beta\beta$ using high-pressure Xe gas TPC.
- 180L prototype has demonstrated great ability of AXEL detector.
 - ✓ Scalable structure
 - ✓ High voltage generation with Cockcroft-Walton generator inside vessel
 - ✓ High resolution: (0.67 ± 0.08) % FWHM @2615 keV
 - ✓ Reconstruction of 3D electron tracks
 - ✓ Development of background rejection method by track pattern with ML
- R&D for 1000L detector construction is in progress.
 - ➤ 64ch-ELCC module with new MPPC
 - ➤ Discharge-resistive structure of ELCC
 - > Dedicated readout electronics
 - ➤ High voltage generation with Cockcroft-Walton generator

Related poster presentation by **S.Urano** and **H.Sasaki**

For further information, please find documents on our web page https://www-he.scphys.kyoto-u.ac.jp/research/Neutrino/AXEL/publication.html

Back up

Status of $0\nu\beta\beta$ search

Relation of half-life time and effective Majorana mass: $T_{1/2}^{0\nu\beta\beta} \propto m_{\beta\beta}^{-2}$ \rightarrow Current upper limit of $m_{\beta\beta}$: 36-156 meV (model dependent)_[1]

Toward $0\nu\beta\beta$ search in normal mass ordering region ($m_{\beta\beta}$ <10 meV), more sensitive detector is necessary

Posterior distributions for $m_{\beta\beta}$ and $m_{\min[2]}$

[1]KamLAND-Zen Collaboration, arXiv:2406.11438v1 (2024)

[2]M.Agostini, et. al., PRD 96, 053001 (2017)

[3] Particle Data Group: Neutrinos in Cosmology, Neutrino masses

Posterior distribution given the knowledge on neutrino mixing parameters

ELCC structure of 180L prototype

- SiPM: VUV-sensitive Multi-Pixel Photon Counter (VUV-MPPC)
- Unit structure for scalability
- No direct gap b/w units to suppress creeping discharge

Measurement condition

- RI source: Thorium-doped tungsten rods (γ -ray of Th series)
- Xe gas pressure: ~6.8 bar
- Voltage: 90 % of our design (EL: 2.7 kV/cm/bar, Drift: 90 V/cm/bar)

Correction & analysis flow

Correction & analysis flow

MPPC ~Multi-Pixel Photon Counter

- Produced by Hamamatsu Photonics
- Arrange a lot of pixels in parallel
- Operated by applying higher voltage than breakdown voltage
- → Output charge is proportional to over voltage
- Constant charge output in 1 pixel detection
- → Count # of detected photon as # of output pixel

Cause of MPPC nonlinearity

- 1. When some pixels detect photons successively before they finish recovering (typical recovering time: ~100 ns), the effective gain is decreased
- 2. When readout voltage is not negligible compared to over voltage applied to MPPC, the effective gain is decreased. (shown in figure below)

Readout resistance & MPPC nonlinearity

- MPPC nonlinearity effect is suppressed with small readout resistance
- Less than 10Ω readout, overshoot is observed in signal wave
 - \longrightarrow 10 Ω readout is adopted for new electronics

Principle of CW generator

- 1 step composed of 2 capacitors and 2 diodes
- Voltage oscillation of capacitors in oscillating column supply charges to capacitors in smoothing column
- \rightarrow Ideal output voltage: 2NV N: number of steps
- Voltage drop occurs by discharge of capacitors in smoothing column due to ripple effect:

$$\Delta V = \frac{I}{fC} \left(\frac{2}{3} N^3 + \frac{1}{2} N^3 + \frac{1}{3} N \right)$$
I: current in resister chain *f*: frequency of input AC *C*: capacitance

Drawing of Cockcroft-Walton circuit

Symmetrical Cockcroft-Walton [6]

Normal CW generator

Ripples in all smoothing capacitors affect the output voltage stability

Symmetrical CW generator

Reduce the ripple voltage on 180-deg phase difference operation

→ Cancel the ripples on each capacitor

Simulation

Scintillation detection

Low detection efficiency of high-pressure-tolerant VUV-PMT due to small detection area (~0.7 photon/PMT @Q-value) causes mis-reconstruction of z position

- → Developing new scintillation light detector
 - ➤ Wavelength-shifter (TPB)+ Acrylic plate + MPPC (S13360-6075PE)
 - \triangleright Larger detection area: 20.5×20.5 mm² \rightarrow 50×50 mm²
 - Expect 11 photon/plate @Q-value

Drawing of new scintillation light detector

Evaluate the performance with 180L prototype

