New Limits on the Coherent Neutrino-Nucleus Elastic Scattering Cross Section at the Kuo-Sheng Reactor-Neutrino Laboratory

S. Karmakar, Manoj. K. Singh, H.T. Wong

Institute of Physics, Academia Sinica

[On behalf of the TEXONO Collaboration]

Based on: Phys. Rev. Lett. 134, 121802 (2025)

Introduction to CvA_{el}

scintillation

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

Coherent effects of a weak neutral current

Daniel Z. Freedmant

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Be (Received 15 October 1973: revised manuscript received 19 November

- Proposed right after the discovery of Neutral Current D. Z. Freedman [1974]
- ightharpoonup Signature \rightarrow Nuclear Recoil < O(1) (keV)
- $\triangleright v + N(A,Z) \rightarrow v + N(A,Z)$
- \triangleright Coherent: Outgoing nucleon wave-functions are in phase $[E_{ij} < O(10)MeV]$
- Elastic: Target remains in the same energy state

$$\frac{d\sigma_{C\nu A_{el}}}{dT} = \frac{G_F^2}{\pi} m_A \mathcal{Q}_W^2 \left(1 - \frac{m_A T_A}{2E_\nu^2} \right) \mathcal{F}^2(T_A)$$

 $\left| \frac{d\sigma_{C\nu A_{el}}}{dT} = \frac{G_F^2}{\pi} m_A \mathcal{Q}_W^2 \left(1 - \frac{m_A T_A}{2E_\nu^2} \right) \mathcal{F}^2(T_A) \right| \left| \mathcal{Q}_W = g_V^p Z + g_V^n N = \left(\frac{1}{2} - 2 \sin^2 \theta_W \right) Z - \frac{1}{2} N \right|$

recoils

Inelastic incoherent $\lambda_{Z^0} \ll 2R$

Elastic incoherent $\lambda_{Z^0} \lesssim 2R$

Elastic coherent ($CE\nu NS$) $\lambda_{Z^0} \gtrsim 2R$

MARCH 1974

Reactor and Ge for CvA_{el} study

3

Reactor and Ge for CvA_{el} study

Quenching Factor for CvA_{el} study

The recoil spectrum → Convoluted with QUENCHING FACTOR

 \square Lindhard k = 0.157 (Ge)

☑No Binding effect

☑ Ionized electrons do not produce recoil atoms of appreciable energy

☑ *Migdal effect*

Quenching factor

$$\frac{dR}{dE_I} = \frac{dR}{dE_R} \left(\frac{1}{Q} - \frac{E_I}{Q^2} \frac{dQ}{dE_I} \right)$$

"q" can be (+/-) in Sign

☑ (+) Sharp cutoff to energy transfer

☑ (-) Enhancement to energy transfer

☑ (0) For the Current Work

Standard Lindhard QF definition

$$Q(E_R) = \frac{kg(\epsilon)}{1 + kg(\epsilon)} \qquad \qquad Q(E_R) = \frac{kg(\epsilon)}{1 + kg(\epsilon)} - \frac{q}{\epsilon}$$

TEXONO [Taiwan EXperiment On NeutrinO]

- **□** Location: Kuo-Sheng Nuclear Power Plant -II on northern shore of <u>Taiwan</u>
- **Theme:** Low Energy Neutrino Physics and Dark Matter Searches
- **☐** Collaboration: India, China [CDEX] & Turkey
- Flux: Reactor Power of 2.9 GW gives 6.35×10¹² cm⁻²s⁻¹ @ distance of 28 m
- **Shielding:** 30 m.w.e. overburden

Eelectrocool Upgrade

- **Extra Space**
- **☐** Two detector configuration in working
- Custom Cold-tip temp & Real-time monitoring
- **☑** No LN₂ required & Less human exposure
- Less micro-phonic noise

Shielding & Bkg @ TEXONO

Generations of HPGe Detector @ TEXONO & Stability

		Generation	Mass (g)	Pulsar FWHM (eV)	Threshold
LN_2	Y	G1	500	130	500
		G2	900	100	300
Electro-Cooling	V	G3	500	70	200
			900	70	~230
		$G3^{+}$	1383	70	200
		G4	900	<50	<140

- □ 200 eV Threshold
- □ Pulsar FWHM 70 eV
- ☐ Controlled Background
- ☐ Stable: >3.5 years

- → Pedestal fluctuation < 0.5 eV @ <3.5 eV
- **→** Power consumption
 - Ambient temperature
 - Outgasing

PHYSICAL REVIEW D 75, 012001 (2007)									
TABLE IV. Summary of γ -lines intensity measured in Period-III.									
Energy (keV)	Isotopes	Source/ Decay Series	$ au_{1/2}$	Intensity (kg ⁻¹ day ⁻¹)					
66.7	⁷³ <i>m</i> Ge	cosmic	0.5 s	15.4 ± 0.4					
92.6	²³⁴ Th	$^{238}\mathrm{U}$	24.1 d	11.9 ± 0.5					
143.8	^{235}U	^{235}U	$7.0 \times 10^{8} \text{ y}$	5.1 ± 0.8					
185.7	^{235}U	^{235}U	$7.0 \times 10^8 \text{ y}$	17.2 ± 0.4^{a}					
186.2	²²⁶ Ra	$^{238}\mathrm{U}$	1600 y	17.2 ± 0.4^{a}					
238.6	²¹² Pb	²³² Th	10.6 h	18.8 ± 0.5					
249.8		unidentified		11.6 ± 0.5					
295.2	²¹⁴ Pb	$^{238}\mathrm{U}$	26.8 m	6.3 ± 0.3					
338.3	^{228}Ac	²³² Th	6.2 h	3.7 ± 0.5					
351.9	²¹⁴ Pb	$^{238}\mathrm{U}$	26.8 m	17.1 ± 0.4					
463.0	^{228}Ac	²³² Th	6.2 h	1.6 ± 0.3					
583.2	$^{208}{ m Tl}$	²³² Th	3.1 m	14.4 ± 0.3					

To Achieve Better Sensitivity:

- □ Reactor OFF data collection
- R&D to achieve Low Energy Threshold & Less Background

Background

In sub-keV region: ~50 counts (kg⁻¹ keV⁻¹ day⁻¹)

135Xe @ REACTOR ON

TEXONO: ¹³⁵Xe Subtraction [250-keV γ]

CvA_{el} @ KSNL

- The cosmogenic x-ray lines are identified
- Reactor ON-OFF → Finite ¹³⁵Xe Compton excess</sup>
- **Cosmogenic peaks** are observed → *Isotopes with half-lives comparable to exposure*

Limits (a) TEXONO

- $\supseteq \rho$ estimate the excess over SM prediction
- $\supset \beta_{Cmpt}$ ¹³⁵Xe excess calibrated @ Sub-keV

Classical Statistic
$$\chi^{2}(\rho, \beta; k) = \sum_{i} \left[\frac{N_{i} - \rho \nu_{i}^{\text{SM}}(k) - \beta}{\Delta_{i}} \right]^{2} + \left[\frac{\beta - \beta^{\text{Cmpt}}}{\Delta^{\text{Cmpt}}} \right]^{2}$$

- ⇒ < 280 eV contribute 90% of vA_{al} signal
- **⊃** Spectral uncertainty 4.26 cpkkd < 280 eV

$$\beta = 1.62 \pm 0.22$$
 cpkkd

- ⇒β < Spectral Uncertainty @ RoI
- Prising Uncertainty → COMBINED

 Efficiency < 250 eV

*cpkkd → counts.kg⁻¹. keV⁻¹.day⁻¹

Limits @ TEXONO

Result & Conclusion

- ✓ Achieved [with 200 eV threshold]
 - $\rho = 0.99 \pm 2.23 \text{ (Stat.)} \pm 0.05 \text{ (Sys.)}$ @ SM [Lindhard k=0.162]
 - \bigcirc 90%CL $\rightarrow \rho$ < 4.7 @ SM [Lindhard k=0.162]
 - **OReactor ON[OFF]** \rightarrow 242[357] kg-days
- Have not observed any excess above SM prediction
- Set the benchmark for precision testing of SM & Beyond

[RECODE program]

See the Talk of "Yufeng Wang"

ID: 408 (Wednesday, August 27, 17:20)

□ KS Reactor decommissioned 2023 → Permission of data taking till end of 2028
 □ R&D continues to achieve → Lower (~150 eV_{ee}) threshold Cross-Correlation, Optimized Pulsar, etc.

- □ New [G4] Detector → Characterization and Commissioning for Dark Matter studies
- □ New Reactor site → RECODE [Sanmen Reactor @ Zhejiang]

Thank You! 謝謝

