

Status and recent results from the CONNIE experiment with Skipper-CCDs

TAUP 2025

19TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS

Alexis A. Aguilar-Arevalo (ICN-UNAM) for the CONNIE Collaboration August 27, 2025

XICHANG, SICHUAN, CHINA

2025.8.24 - 8.30

Support from DGAPA UNAM PAPIIT-IN104723 & CONAHCYT CF-2023-I-1169

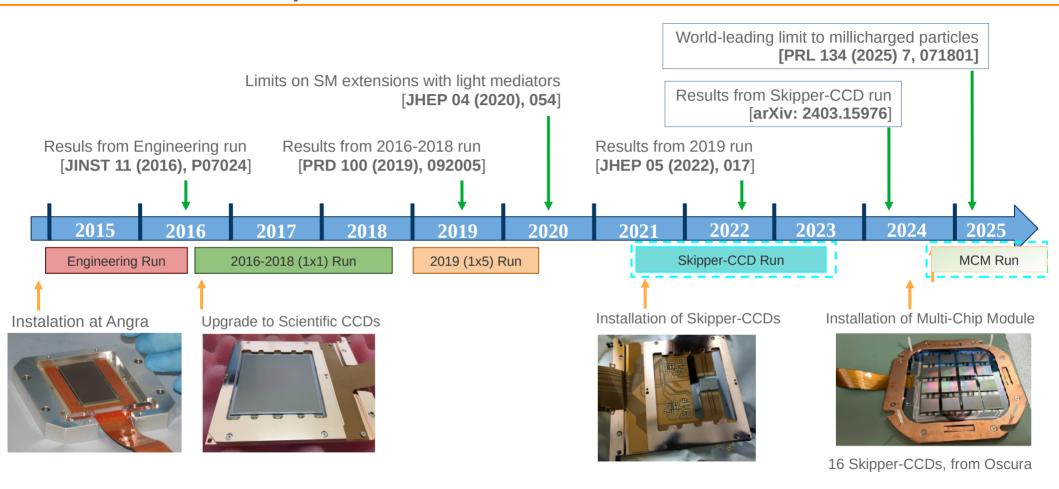
CONNIE Collaboration

~ 35 members from 6 countries

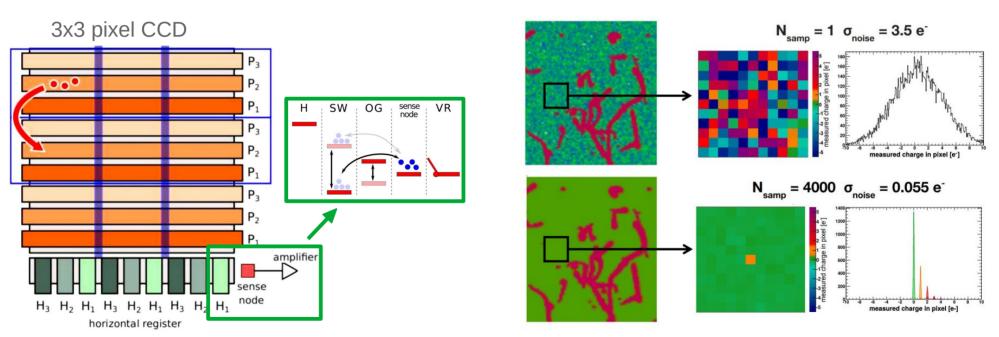
Centro Atómico Bariloche, CONICET, ICIFI – Universidad Nacional de San Martín, IFIBA – Universidad de Buenos Aires, Universidad de Córdoba, Universidad del Sur, Centro Brasileiro de Pesquisas Físicas, Universidade Federal do Rio de Janeiro, CEFET – Angra, Universidade Federal do ABC, Instituto Tecnológico de Aeronáutica, Universidad Nacional Autónoma de México, Universidad Nacional de Asunción, University of Zurich, Fermilab

Main goals

- Detect CEvNS with reactor neutrinos in silicon with Skipper-CCDs.
- Explore Beyond Standard Model (BSM) physics
- Develop monitoring of nuclear reactors with neutrino detection for safeguards.


CONNIE: Coherent Neutrino Nucleus Interaction Experiment

- Experiment @ 30 m from the 3.9 GW reactor core
- Reactor-OFF periods (~1/14 months) for background measurements
- Flux: $\sim 7.8 \times 10^{12} \, \overline{\nu}_{\rm e} \, \rm cm^{-2} \, s^{-1}$
- Passive shield (Lead + polyethylene)
- Energy threshold ~ 15 eV ee

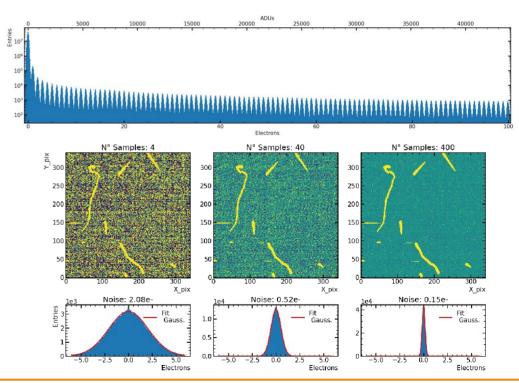

CONNIE: experiment timeline

Skipper-CCDs: e⁻ counting sensors

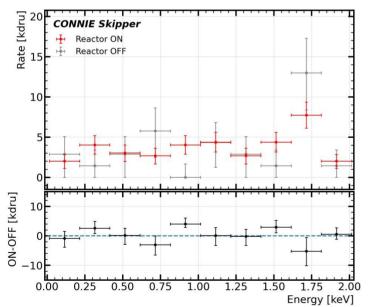
New-generation CCDs with a readout stage that enables multiple (N) measurements of the charge each pixel.

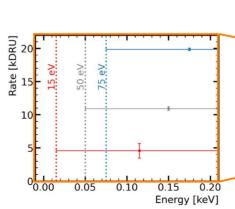
- Readout noise is reduced as $\sigma = \frac{\sigma_1}{\sqrt{N}}$ reaching single-electron resolution!
- Promising technology for neutrino and dark matter direct detection (currently in use!)
 Talk by M. Traina DM3A

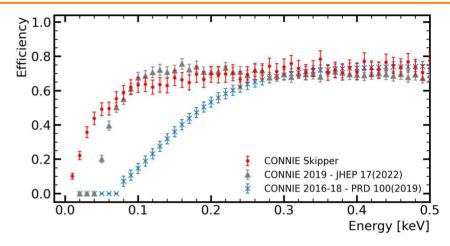
- J. Janesick et al.. "New advancements in charge-coupled device technology: sub-electron noise and 4096×4096 pixel CCDs". [10.1117/12.19452]
- G. Fernandez Moroni et al.. "Sub-electron readout noise in a Skipper CCD fabricated on high resistivity silicon". [10.1007/s10686-012-9298-x]
- J. Tiffenberg et al.. "Single-Electron and Single-Photon Sensitivity with a Silicon Skipper-CCD". [10.1103/PhysRevLett.119.131802]

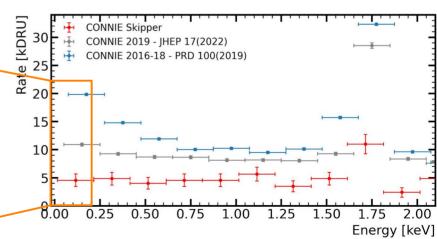

First installation of skipper-CCDs at CONNIE in July 2021

- 2 LBNL-FNAL skipper CCDs (1022 x 682 (15 μm ² pixels, 675-μm thick).
- New Low Threshold Acquisition (LTA) readout electronics. [JATIS 7 (2021), 1 015001]
- New dedicated Vacuum Interface Board.



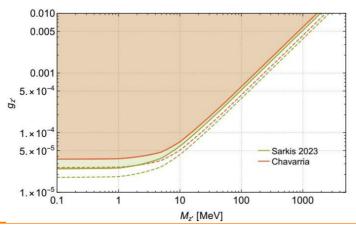


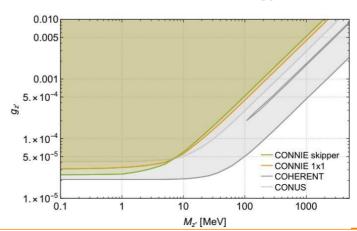

Improvements over standard-CCD runs:


- Energy threshold reduced to 15 eV_{ee} (~240 eV_{nr}).
- Higher detection efficiency at lower energies.
- Lower and flat background rate: ~4 kdru.

Exposure: 14.9 g-day reactor-on & 3.5 g-day reactor-off. **No excess observed.**

Search for CevNS: 95% limit of 76 times the predicted rate.

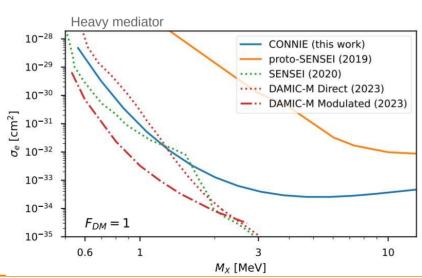

Comparable to previous limit with standard CCDs achieved with x10³ larger exposure.

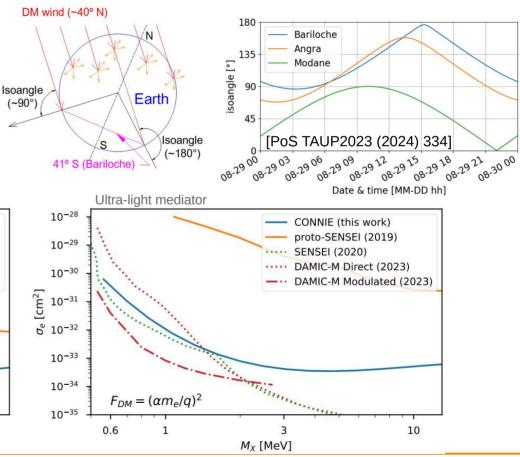

• Updated reactor neutrino flux & Sarkis model of nuclear recoils quenching factor [PRA 107, 062811] .

Measured Energy	Sarkis (2023) rate	Chavarria rate	Observed 95% C.L.	Expected 95% C.L.
$[\mathrm{keV}_{\mathrm{ee}}]$	$[kg^{-1}d^{-1}keV_{ee}^{-1}]$	$[kg^{-1}d^{-1}keV_{ee}^{-1}]$	$[kg^{-1}d^{-1}keV_{ee}^{-1}]$	$[kg^{-1}d^{-1}keV_{ee}^{-1}]$
0.015 - 0.215	$29.3^{+4.6}_{-4.7}$	17.7 ± 3.3	$2.24{\times}10^{3}$	3.18×10^{3}
0.215 - 0.415	$2.7^{+1.3}_{-1.2}$	2.20 ± 0.21	7.36×10^{3}	4.77×10^{3}
0.415 - 0.615	$0.43^{+0.41}_{-0.39}$	0.36 ± 0.04	3.41×10^{3}	3.31×10^{3}

Search for light vector mediator: slight improvement at low M Z' over our previous limit.

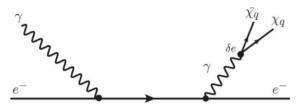
• Considered simplified universal model [JHEP 05 (2016) 118] and lowest energy bin.

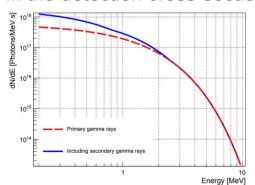


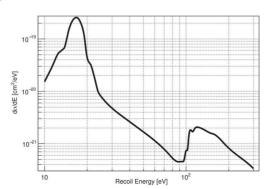


Search for DM by diurnal modulation: best DM-electron limits by a surface experiment.

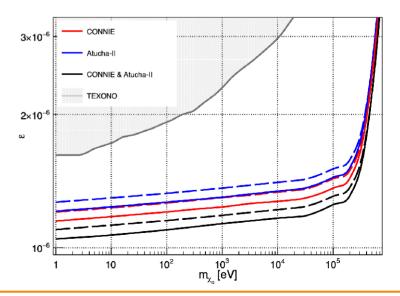
Galactic DM wind comes from a preferred direction. Diurnal modulation by interactions in the Earth. Enhanced in the southern hemisphere.


- Data compared to DAMASCUS simulations.
- Model with MeV-scale DM, coupling to the SM via a kinetically-mixed dark photon.




Joint search, with Atucha-II, for reactor-produced mCPs: → world-leading limits for masses <1 MeV

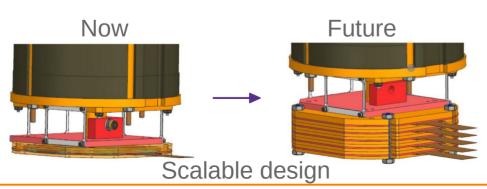
Relativistic mCPs could be produced from Compton-like scattering of HE γ -rays ion the reactor core.

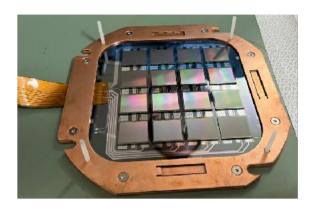


- Considered γ-ray spectrum from uranium fission and mCP production from primary and secondary γs.
- Included collective excitation effects [Comm Phys 7, 416 (2024)] in the detection cross-section.

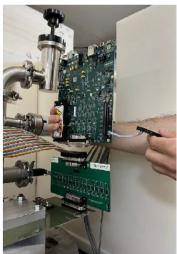
Observable	CONNIE	Atucha-II
Reactor ON exposure [g-day]	14.9	59.4
Reactor OFF exposure [g-day]	3.5	22.6
Energy bin [eV]	15-215	40-240
Reactor ON counts	6	168
Reactor OFF counts	2	71
90% C.L. upper limit on events	6.2	30.9

CONNIE-MCM (Multi-Chip Module)

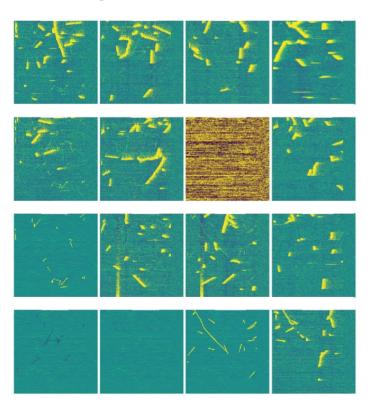

Towards more massive experiments

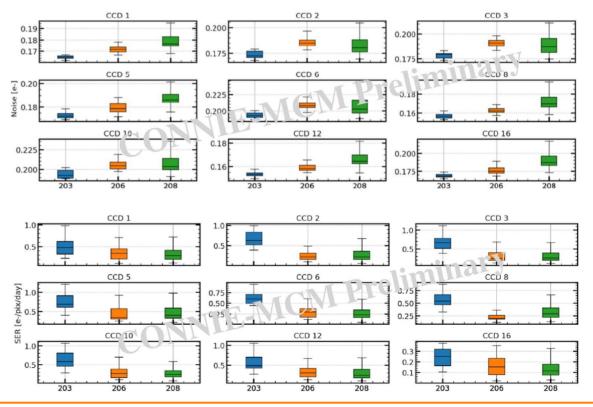

MCMs offer a new compact arrangement of sensors:

- 16 Skipper-CCDs sensors on the same module (8 g each)
- Each Skipper is 1278 x 1058 (15 μm)² pixels, 725-μm thick
- Designed for the Oscura DM experiment [JINST 18, 08016 (2023)]
- Multiplexed readout [Sensors 22 (11), 4308; JINST 18 P01040]



- New VIB and multiplexer board
- 10x increase in mass with respect to single sensors
- Currently taking data -



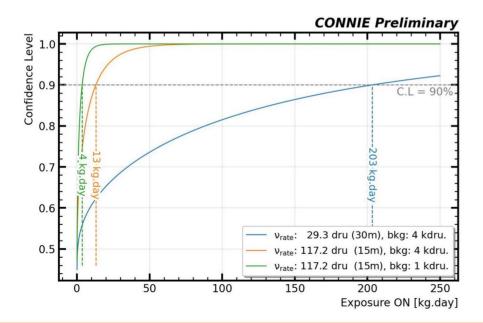


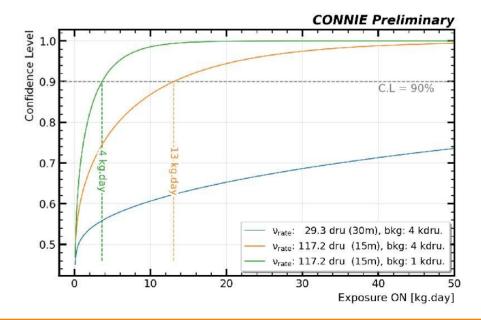
CONNIE-MCM Performance

Commissioning and optimization ongoing.

- 9/16 skipper-CCDs working in the current MCM.
- Performing stable: noise of 0.15-0.21 e RMS and single-electron rate below 0.5 e /pix/day.

Next steps and challenges

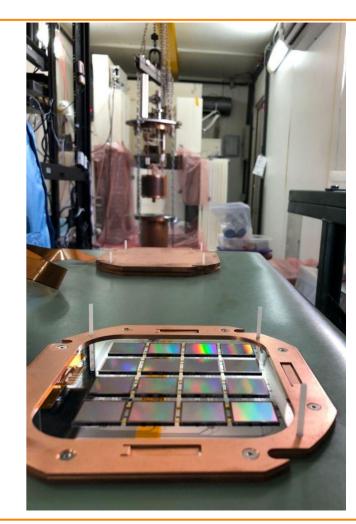

Towards CEvNS detection


- CONNIE-MCM
 - Optimizing performance for reactor OFF spectrum (Nov 2024) and reducing background.
 - Collecting data to improve current experimental limits.
 - Improvements in current BSM limits with ~10 times more mass.
 - Proof of concept for new technology to increase mass.
 - Synergy with Oscura: first experiment to install an MCM at a nuclear reactor.
- Plans to increase the neutrino flux
- New position @ Angra-2 (~17 m from reactor core, inside the dome) identified. Negotiations underway.
- Would: increase the flux by factor of ~3.
 - reduce background by factor of 3-4 (rough estimate).
- Requires a new compact detector design.

CONNIE future perspectives

Towards CEvNS detection

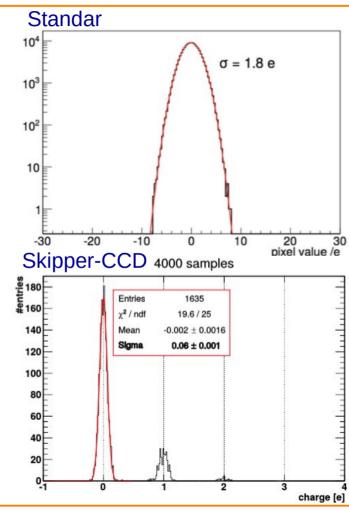
- With 15 eV threshold and a 1 kg detector at CONNIE (30 m from the reactor core), we need **200 days** of operation to observe CEvNS with 90% CL, assuming the current background (4 kdru).
- Moving to 15 m from the reactor core, we would need **13 days** of operation to observe CEvNS with 90% CL under the same conditions and **4 days** if the background can be reduced to 1 kdru.



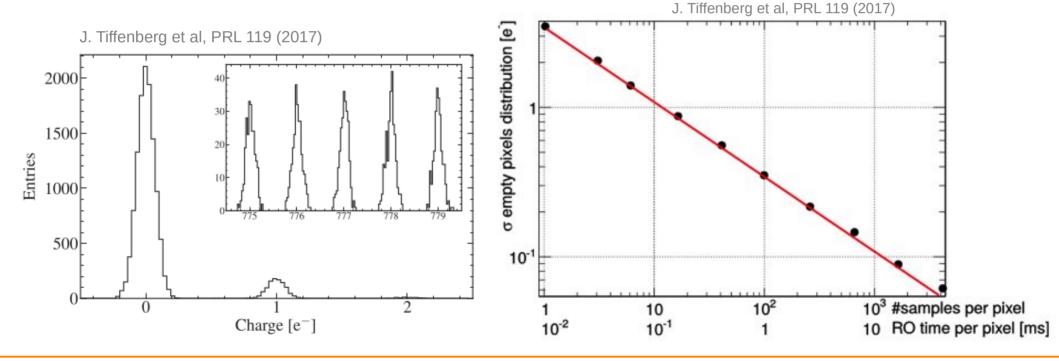
Conclusions

- Skipper-CCDs are a promising technology for detecting lowenergy processes.
- Excellent performance in 2021-2023: flat background (~4 kdru) and 15 eV ee (~240 eV nr) threshold.
- New CEvNS limit with skipper-CCDs and 18.4 g-day comparable to limit with standard CCDs and 2.2 kg-day!
- Updated limits on: light vector-mediators, light DM by diurnal modulation, and millicharged particles (with Atucha-II).
- CONNIE started its next phase with a 16-sensor Multi-Chip-Module.
- Need a mass ~1 kg of skipper-CCDs for CEvNS detection.
- Efforts to increase the neutrino flux are on-going

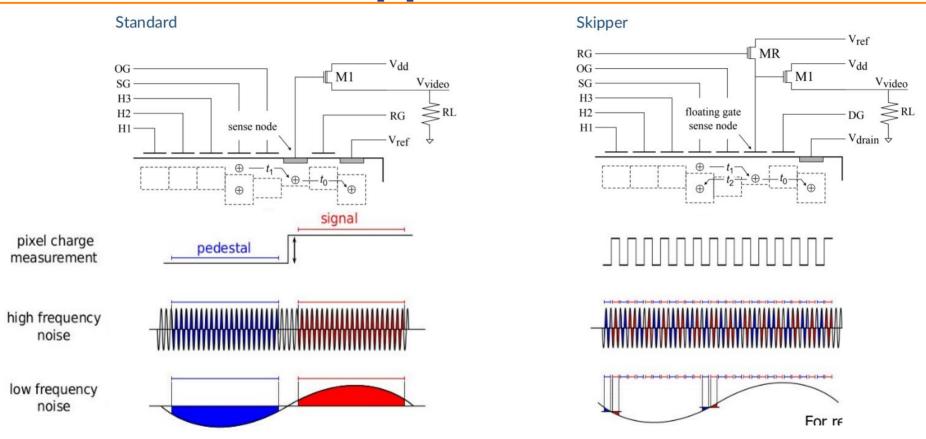
Stay tuned!


Thank you for your attention!

BACKUPS


Skipper CCD

- Identical to standard CCDs regarding: substrate, gate structure, channel stops. *Different readout stage*.
- Readout circuit modified to allow:
 - Non-destructive and repeated charge measurement.
 - Reduction of electronic noise.
 - Counting of individual ionization electrons.
- Promising technology for DM and ν experiments and other applications:
 - Experiments OSCURA, SENSEI, DAMIC-M ...
 - Quantum optics, astronomy, nuclear physics.



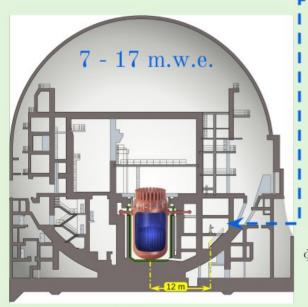
Sub-electronic readout noise

- Readout noise in Skipper-CCDs scales as 1/sqrt(N_{samp})
 Compromise between: speed vs. resolution.
- Can count individual electrons: self calibrated charge measurement.

Standard vs skipper CCD readout

- Skipper: ruido de baja frecuencia se reduce significativamente en cada medición.
- Muchas mediciones → promedio preciso.

Atucha II Experiment

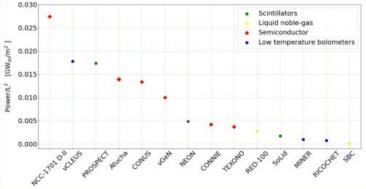

[Eliana Depaoli, Magnificent CEvNS 2025]

Short-baseline ν -experiment at Atucha II power plant

Commercial facility, 2.2 GWth

Fuel: Natural UO₂

D₂O moderator & refrigerator



Dose 1 µSv/h @detector room

 $\Phi_{\nu} = 2.6 \times 10^{13} \, \bar{\nu}_e / \mathrm{cm}^2 / \mathrm{s}$

Magnificent CEvNS 2025. E. Depaoli

Search for Millicharged particles

- Detection: interaction with silicon via atomic ionization (t-channel)
- Semi-classical Photo Absorption Ionization (PAI) model.

$$\frac{d\sigma_R}{dE} = z^2 \frac{2k_R}{\beta^2} \left(\frac{1 - \beta^2 E / E_{max}}{E^2}\right) \quad \frac{d\sigma_{mcp}}{dE} = \epsilon^2 \frac{d\sigma_R}{dE} \longrightarrow \frac{d\sigma_{mcp}}{dE} = \epsilon^2 |F(E)|^2 \frac{d\sigma_R}{dE}$$

$$ze \to \epsilon e$$

 $\chi_q \qquad \delta_{\chi_q} \qquad k' = (E', \vec{k}')$ $k = (E, \vec{k}) \qquad \gamma^* \quad q = (T, \vec{q}) \qquad e^ (A, Z) \qquad P = (M, \vec{0}) \qquad (A, Z)^+$

Modeling the Form Factor with the Photo Absorption Ionization model:

Relativistic rise in e. deposition

Cherenkov

Resonance absorption at atomic energy levels

Rutherford quasi free scatterings

$$\frac{d\sigma_{mcp}}{dE} = \epsilon^2 \frac{d\sigma_{PAI}}{dE}$$

Limit setting: search for the lowest coupling compatible with observed rate in the 100-150 eV bin.