

New results from MicroBooNE's search for a Low-Energy-Excess anomaly in the γ/e^+e^- channels

Xiao Luo, University of California Santa Barbara
On behalf of the MicroBooNE collaboration

Overview of MicroBooNE LEE results:

MiniBooNE's 4.8σ LEE anomaly

Electron LEE v1.0 (2022)

Electron LEE v2.0 (2025)

Overview of MicroBooNE LEE results:

MiniBooNE's 4.8σ LEE anomaly

Phys. Rev. Lett. 128, 241801 (2022)

Phys. Rev. D 105, 112003 (2022)

Phys. Rev D 105, 112004 (2022)

Phys. Rev. D 105, 112005 (2022)

Phys. Rev. Lett. 135.081802 (2025)

No Excess in the electron channel, excluding MiniBooNE LEE as ν_e 's at > 99%CL

Overview of MicroBooNE LEE results:

MiniBooNE's 4.8σ LEE anomaly

Quick summary of MicroBooNE LEE results so far:

No excess:

- in the electron channel
- in the exclusive photon channels: $NC \triangle \rightarrow N\gamma$ and NC Coherent

MiniBooNE, PRL 121, 221801 (2018)

Focus of this talk

Inclusive photon - cast a wide net to search for anomaly in any process that produces a single γ , to definitively answer if MicroBooNE sees photon excess

arxiv.2502.06064

sees any excess

in the **photon**

channel

Inclusive photon LEE – signal definition

Model-independent approach:

Search for an inclusive set of photon events that can enter the MiniBooNE LEE anomaly

^{*} MiniBooNE vetoes muon events but NOT efficient in detecting muons below 100 MeV. $\mu < 100~MeV$ is allowed in our signal definition

^{**} Defined as protons with true kinetic energy above 35 MeV (can be reconstructed in MicroBooNE).

Inclusive photon LEE – signal definition

Model-independent approach:

Search for an inclusive set of photon events that can enter the MiniBooNE LEE anomaly

^{*} MiniBooNE vetoes muon events but NOT efficient in detecting muons below 100 MeV. $\mu < 100~MeV$ is allowed in our signal definition

^{**} Defined as protons with true kinetic energy above 35 MeV (can be reconstructed in MicroBooNE).

Inclusive photon LEE – signal processes

Five 1γX signal processes in SM $NC\pi^0$ 1γ (40%), $NC\Delta$ 1γ (2%), NC Other 1γ (1%), $\nu_\mu CC$ 1γ (9%), Out of FV 1γ (46%)

Inclusive photon LEE – signal selection

To select **SM - 1γX** signal:

Four BDTs targeted on rejecting $\nu_{\mu}CC$, Outside of TPC, $NC\pi^0$, ν_eCC backgrounds (details in the backup slides)

Inclusive photon LEE – final selected data

After unblinding:

- Observed **678** data events
- Predicted 608 SM events
- Shower energy and angle show good agreement between data and prediction within error

All selected $1\gamma X$ data events displayed in one picture!

Inclusive photon LEE – final selected data

After unblinding:

- Observed **678** data events
- Predicted 608 SM events
- Shower energy and angle show good agreement between data and prediction within error

Reco Shower Energy [MeV]

Constrain systematics

 $v_{\mu}CC$ and $NC\pi^{0}$ sidebands to constrain systematics of signal prediction

Type of Uncertainty	Selection
Flux model	6.4%
GENIE cross section model and GEANT4 reinteractions	19.1%
Detector response	6.5%
MC statistics	2.0%
Interactions in Dirt	0.8%
Total Uncertainty (Unconstrained)	21.3%
Total Uncertainty (Constrained)	8.4%

- Observed 678 data events, 114 events more than constrained prediction (564 \pm 26 (stat.) \pm 51 (syst.))
- Data is consistent with the constrained SM prediction to within ${f 1.6}\sigma$
- Excess is concentrated in low energy and forward angle

Inclusive photon LEE – Result (ROI)

single-photon, zero-proton events

Excess only in the zero proton bin!

- Data excess of 93 \pm 22 (stat.) \pm 35(syst.)
- 2σ deviation from constrained prediction in ROI

^{*}Protons is defined as above 35MeV MicroBooNE reconstruction threshold

Inclusive photon LEE – Result (excess event features)

Kinematic feature of excess events:

- Without proton in the final state
- shower energy below 600 MeV
- mostly forward going

Compare shower energy of the 2σ excess (data minus constrained prediction) to the scaled five signal processes, best agreement:

- $NC \pi^0 1 \gamma \times 2$
- Out of FV 1γ X 1.6

As a example of unlikely source for the excess, NC Δ 1 γ needs to scale up by a factor of 10, and also has a different shape in shower energy

MicroBooNE photon excess Vs. MiniBooNE LEE

A "simple model of MiniBooNE LEE- γ "

- 1. Unfold MiniBooNE excess (in shower energy and angle) to true photon shower kinematics
- Scale γ excess from MiniBooNE to MicroBooNE by [number of nucleons]* together with other detector differences
- 3. Propagate the γ excess through MicroBooNE analysis on top of the SM predictions.

Shower Energy

MiniBooNE LEE-γ model prediction smaller than observed excess!

^{*}many assumptions can go into the scaling factor when constructing the MB LEE model in uB.

MicroBooNE photon excess — What's next?

A mild 2σ excess in the inclusive single photon analysis narrows down the ROI at zero proton below 600 MeV shower energy.

Need deeper look at this ROI for **exclusive photon-like** search targeting on specific process, this could include BSM processes that produce single photon and e+e-

Observe **no excess of** e⁺e⁻ signal, placed world first direct bounds on the dark neutrino model and excluded the majority of the model phase space motivated by MB anomalies at **95% C.L**.

Summary of MicroBooNE's LEE search

- Observed no excess in the electron channel (exclusion at 99%CL with full dataset)
- Inclusive photon LEE search:
 - general agreement with SM prediction
 - 2σ excess at ROI (zero proton & < 600MeV)
 - Excess shape similar to "NC $\pi^0 1\gamma$ " (X2) or "Out-of-FV 1γ " (X1.6)
- No excess in exclusive γ/e^+e^- search investigated so far: NC $\Delta \rightarrow N\gamma$, NC Coherent, and Dark neutrino
- Four new papers featuring MicroBooNE LEE search on arXiv!

Thank you!

backup

Inclusive photon LEE – signal selection

After Cosmic Rejection, S:B~1:50 -> Four BDTs targeted on background rejection

NC π^0 Removal BDT

Outside TPC Removal BDT

v_CC Removal BDT

- 1γ X efficiency: 7%

- $1\gamma X$ purity: 40%

- Efficiency/purity flat across kinematic variables, as designed for an inclusive photon LEE search to probe a wide phase-space.

arxiv.2502.06064

Inclusive photon LEE – sideband constraints

NC π^0 Sideband BDT Score

Sidebands (left side of the BDT scores) used for Data/MC validation and signal constraints

Full correlation matrix: §

- Flux
- Xsec
- Detector
- MC stat.
- Dirt

Type of Uncertainty	Selection
Flux model	6.4%
GENIE cross section model and GEANT4 reinteractions	19.1%
Detector response	6.5%
MC statistics	2.0%
Interactions in Dirt	0.8%
Total Uncertainty (Unconstrained)	21.3%
Total Uncertainty (Constrained)	8.4%

arxiv.2502.06064

 $v_{_{\rm II}}$ CC Sideband BDT Score

Inclusive photon LEE – signal selection

Four BDTs targeted on background rejection

Inclusive photon LEE – signal selection

Last BDT: e/γ separation

Final cut: requiring exactly 1γ reco shower

S:B~1:1

Blind analysis, this only uses ~2% of the full dataset

A MiniBooNE Excess Toy Model

$$\frac{N_{\rm excess}^{\mu \rm B}}{N_{\rm excess}^{\rm MB}} = \begin{array}{c} {\rm ratio\ in} \\ {\rm interaction/decay\ rate} \end{array} \qquad \begin{array}{c} {\rm x} \\ {\rm flux} \\ {\rm e.g.} \\ \frac{(M\ {\rm or}\ V)_{\rm target}^{\mu \rm B}}{(M\ {\rm or}\ V)_{\rm target}^{\rm MB}} \end{array} \qquad {\rm e.g.} \\ \begin{array}{c} {POT^{\mu \rm B}} \\ {POT^{\rm MB}} \times \frac{(L_{\rm baseline}^{\rm MB})^2}{(L_{\rm baseline}^{\rm mB})^2} \end{array}$$

For photons, must make an assumption about the process the excess events originate from to determine overall scale factor of the excess from MiniBooNE to MicroBooNE. Some options include:

- 1. A neutrino interaction with target nucleons: Scale by mass (number of nucleons)
- 2. A coherent interaction: Scale by atom number
- 3. A decay-induced interaction: Scale by volume of the detector

Uncertainties from the neutrino-argon cross-section based on the GENIE event generator and the hadron-argon interaction based on GEANT4

- charged-current quasi-elastic (CCQE)
- charged-current resonance (CCRES)
- 3. charged-current non-resonance
- 4. charged-current transition
- 5. charged-current deep-inelastic scattering (CCDIS)
- 6. neutral-current interactions
- 7. final-state interactions

Inclusive Single-Photon, Zero-Proton Angle

Inclusive Single-Photon: Backwards Projected Distance

Single-Photon, Zero-Proton Events

What this means to theory...

	Models	MicroBooNE analyses	1e1p	1eNp	1eX	1γ1p	1γ0p	•••
SM x-sections $(NC \Delta \gamma)$	NCγ Incoherent A. Ioannisian, 1909.0857	<u>1</u>	-	-	-	+	+	
	NCγ Coherent L Alvarez-Ruso et al 2018 J. Phys.: Conf. Ser.	1056 012001	-	-	-	+	+	
Dark neutrinos kinetic mixing - (NC e ⁺ e ⁻)	Light dark photon <u>E. Bertuzzo et al, 1807.</u> Signature: forward boosted e ⁺ e ⁻ showe		-	-	+	+	+	
	Heavy dark photon P. Ballett et al, 1903.0 Signature: showers + proton + gap	<u>)7589</u>	-	-	+	+	+	
Sterile Neutrinos (γ or e)	O(100MeV) Heavy sterile neutrino radi Gninenko, PRL 103, 241802, L Alvarez-Ruso Phys.: Conf. Ser. 1056 012001	•	-	-	+	+	+	
	O(1eV) sterile neutrino oscillation (strowith LBL $ u_{\mu}$ disappearance data)	ong tension	+	+	+	-	-	

Models manifest differently in event rates and kinematics. Sidebands checks are crucial to differentiate the models.

Discussion between theorists and experimentalists are very helpful to complete this table.

Catamani	Model Signature		References			
Category	iviodei	Signature	LSND	MiniBooNE	Sources	References
	(3+1) oscillations	eoscillations	1	/	1	Reviews and global fits [93, 103, 105, 106]
Flavor transitions Secs. 3.1.1-3.1.3, 3.1.5	(3+1) w/ invisible sterile decay	osci e- 1s w/ ν_4 decay	1		1	[151, 155]
	(3+1) w/ sterile decay	e → γ	1	1	1	[159–162, 270]
Matter effects Secs. 3.1.4, 3.1.7	(3+1) w/ anomalous matter effects	$ u_{\mu} \rightarrow \nu_{e} \text{ via} $ patter effects	1	/	X	[143, 147, 271–273]
	(3+1) w/ quasi-sterile neutrinos	$ ho_{ ho} ightarrow u_e ext{ w/}$ resonant $ u_s$ matter effects	1	/	1	[148]
Flavor violation Sec. 3.1.6	Lepton-flavor-violating μ decays	μ (e) $^+ u_{lpha}\overline{ u_e}$	1	×	X	[174, 175, 274]
	neutrino-flavor- changing bremsstrahlung	$\nu_{\mu}A \rightarrow \mathbf{e}^{-}$	1	/	X	[275]
Decays in flight	Transition magnetic mom., heavy ν decay	$V \rightarrow \nu \gamma$	×	1	×	[207]
Sec. 3.2.3	Dark sector heavy neutrino decay	e e · · · · · · ·	×	/	X	[208]
Neutrino Scattering Secs. 3.2.1, 3.2.2	neutrino-induced upscattering	$e \rightarrow \nu c \gamma$	1	/	X	[205, 206, 209–216]
	neutrino dipole upscattering	y e e	/	/	×	[40, 185, 187, 188, 190, 193, 233, 276]
Dark Matter Scattering Sec. 3.2.4	dark particle-induced upscattering	γ + _ε e	X	/	X	[217]
	dark particle-induced inverse Primakoff	Y	1	/	×	[217]

Lee Hagaman on behalf of the MicroBooNE Collaboration 138

BSM Possibilities for the LEE

- The MiniBooNE LEE has often been interpreted as an excess of e^- events, potentially from sterile neutrino short baseline $\nu_{\mu} \rightarrow \nu_{e}$ oscillations
- But there are lots of well motivated beyond-standard-model possibilities for γ and e⁺e⁻ events as well

© Electron signals

Photon signals

Di-Photon signals

e+e- signals

Snowmass White Paper on Light Sterile Neutrinos J. Phys. G: Nucl. Part. Phys. 51 120501 (2024)