

Experiment vGeN at Kalinin NPP. Status and latest results.

A.Lubashevskiy¹ on behalf of the vGeN collaboration

¹Joint Institute for Nuclear Research, Dubna, Russia

vGeN aims:

vGeN experiment is aimed to study neutrino scattering using antineutrinos from the reactor core of Kalinin Nuclear Power Plant (KNPP) at Udomlya, Russia. Main searches:

- Coherent elastic neutrino-nucleus scattering (CEvNS).
- Non-standard neutrino interactions.
- Neutrino electromagnetic properties (μ_v +millicharge).
- Nuclear physics, sterile neutrino.
- Other rare and exotics processes.
- Applied usage: reactor monitoring.

experimental sensitivity $V \equiv \tilde{V}$ Paul Dirac Majorana $\mu_{\nu} < 10^{-14} \mu_{\rm B}$

10-48

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

10-49

1: Magnetic moment diagram for Dirac neutrinos.

Figure 2: Magnetic moment diagram for Majorana neutrinos

vGeN reactor site at Udomlya, Russia

Key sensitivity factors:

- High neutrino flux
- Low background
- Low threshold
- Discrimination of the noise
- Background knowledge
- Stability in time
 - Spectrometer v**GeN** under the reactor unit #3 (3.1 GW_{th})
 - Distance from the detector to the center of the reactor core is 11 m, 4.4·10¹³ v/(sec·cm²)
 - Good support from KNPP

Reactor unit #3 @ KNPP

70°

Comparison of the reactor sites

Experiment	Location	Neutrino flux v/(cm² s)	Overburden [m w. e.]
ν GeN	KNPP, Russia	~4.4×10 ¹³	~50
CONUS+	Leibstadt, Switzerland	1.45×10 ¹³	7-8
TEXONO	Kuo-Sheng NPP, Taiwan	6×10 ¹²	~30
RED-100	KNPP, Russia	1.4×10 ¹³	>50
CONNIE	Angra 2, Brazil	7.8×10 ¹²	0
RICOCHET	ILL, France	1.6×10 ¹²	~15
MINER	Texas A&M, USA	2×10 ¹²	~5
NUCLEUS	Chooz, France	1.7×10 ¹²	~3
NCC-1701	Dresden-II, USA	4.8×10 ¹³	-
NEON	Hanbit 6, Korea	7.1×10 ¹²	~8
SBS	Laguna Verde, Mexico	3×10 ¹² ?	?
RECODE	Sanmen NPP, China	5.6×10 ¹³	>15

The vGeN setup

- To detect signals from neutrino scattering we use a lowthreshold, low-background HPGe detector.
- Detector with a mass of 1.4 kg and e-cooling is used for the CEVNS detection at KNPP.
- The passive and active shielding protects detector from external radiation.
- A setup is installed on a lifting mechanism allows to change distance to the reactor's core from 11 to 12.5 m.

Active μ veto – 5 cm

DAQ and cuts

- Reset preamplifier
- DAQ organize with real-time ADC system.
- Shaping amplifiers / no WFs so far
- Noise suppression by comparison different signals
- For selections and veto:
 - «Inhibit» removing reset signal
 - Anticoincidence with muon veto

Comparison of two channels with the same τ_{sh}

Comparison with the different τ_{sh}

Calibration & efficiency

- Energy calibration at low energy is performed by means of 10.37 keV cosmogenic line and pulse generator.
- Calibration check with 1.3 keV line.
- Data taking shows very good stability of peak position during all measurement time.
- Energy resolution of 1.4 kg detector at KNPP is 101.6(5) eV (FWHM).

Control of experimental conditions

- The stable measurement conditions are very important, because instabilities can change amplification and noise level.
- ✓ Air temperature condition in the experimental hall is stabilized by three air-conditioners.
- ✓ Temperature and humidity are constantly monitored by two sensors.
- ✓ Gamma background outside shielding was checked with NaI detector.
- ✓ Neutron background outside shielding (fast and thermal) is measured by special low background He3 counter and NaI[L] detector and Bicron liquid scintillator.
- Cosmogenic activation products slowly decay in time and have to be taken into account during analysis.

Bicron neutron background

- Liquid scintillator based on BC-501A.
- Cylindrical volume h = 13cm, \emptyset = 8 cm.
- Measurements at KNPP outside vGeN shielding, both ON and OFF.
- Measurements started from March 2024. Analysis ongoing.

- Some correlation with ON/OFF
- Preliminary: E(n) > 1 MeV outside shielding:
- \sim 5.6 10⁻⁵ neutron/(cm²·s)
- Preliminary MC predicts almost no contribution from neutrons to the vGeN background in the ROI

27.08.2025

Neutron background

- Investigation of the "high" energy part of the vGeN spectrum give direct information about neutron flux in the HPGe detector.
- No difference in thermal flux in ON/OFF measurements.
- No evidence for fast neutrons scattering in the data.

Data taking & stability

- Total exposition: more than
 2200 kgd taken.
- Some difference in noise and background conditions.
- Need to take into account this differences.

- Background conditions were stable.
- Selected statistics: OFF 38 days, ON 137 days.

vGeN background

No significant difference in background level during reactor ON and OFF regimes is observed.

Comparison to other running Ge experiments

Source	Rate, (kg×d) ⁻¹
⁷¹ Ge/ ⁶⁸ Ge EC (L1)	~1.3×
⁶⁶ Zn EC	~0.7×
⁶⁸ Ga EC	~0.5×
⁷¹ Ge/ ⁶⁸ Ge EC (K)	14.8×
²¹⁰ Pb	1.1
⁷² Ge(n,γ) ^{73m} Ge	6.1*
⁷⁴ Ge(n,γ) ^{75m} Ge	1.8
⁷⁰ Ge(n,γ) ^{71m} Ge	1.7
²¹⁴ Pb (²²² Rn)	0-3.2
²¹⁴ Pb (²²² Rn)	0-7.8
²¹⁴ Pb (²²² Rn)	0-13.2
annihilation	11.6
²¹⁴ Bi (²²² Rn)	0-9.5
¹³⁷ Cs	5.9
⁶⁰ Co	3.5
	71Ge/68Ge EC (L1) 66Zn EC 68Ga EC 71Ge/68Ge EC (K) 210Pb 72Ge(n,γ)73mGe 74Ge(n,γ)75mGe 70Ge(n,γ)71mGe 214Pb (222Rn) 214Pb (222Rn) 214Pb (222Rn) annihilation 214Bi (222Rn)

+ Pb, Bi X-rays * - [53.4+13.3] keV, affected by τ_{sh} * - as of Dec. 2022- May 2023

CEvNS signal calculation

- Neutrino spectrum is calculated based on the SM2018 model up to 11 MeV taking into account fission fractions of isotopes and average thermal power of the reactor.
- The expected CEvNS spectrum was calculated for all germanium isotopes, taking into account detector's performance.
- Three cases for quenching (ionization part of the energy deposited) were considered for analysis.

T, keVee

Fit and results

- No assumptions about background and no fitting its components
- Only difference between ON-OFF spectra is used for analysis.

Chinese Physics C (2025),49, 5, 053004.

QF	$A_{\text{best}} \pm \sigma_A, \times \text{SM}$	χ^2_{best} (ndf=10)	$S, \times SM$	$L, \times SM$
C	1.5 ± 1.7	13.6	3.8	4.3
D1	0.1 ± 0.4	14.4	1.6	0.7
D2	0.8 ± 1.4	14.1	3.3	3.1

Systematic studies

Main systematic uncertainties:

- Quenching factor
- Precision of calibration at low energies
- Uncertainty of the neutrino spectrum

INR -Vlasenko A.P. et al. Physics of Atomic Nuclei. (2023). Vol. 86,6,1178-1188.

Energy scale	$A_{\text{best}} \pm \sigma_A \ (C/D1/D2)$	Limit (C/D1/D2)
Default	$1.5 \pm 1.7 \; / \; 0.1 \pm 0.4 \; / \; 0.8 \pm 1.4$	4.3 / 0.7 / 3.1
Global	$1.8 \pm 1.7 \; / \; 0.1 \pm 0.4 \; / \; 1.0 \pm 1.4$	4.5 / 0.7 / 3.3
Modified	$1.2 \pm 2.4 / 0.0 \pm 0.6 / 0.6 \pm 2.1$	5.1 / 1.1 / 4.1

Sensitivity exploration

Given the measured BG rate and currently achieved threshold we can extrapolate the sensitivity studies.

Two scenarios:

1. Direct ON - OFF: time = OFF, ON = 11×OFF

 3σ at ~ 20/30 year OFF for a current energy threshold

2. ON - BG model (no syst.): time = ON

 3σ at $\sim 1.5/3$ years – (already have in hands)

Need to:

- 1. Deconvolve the BG \rightarrow full BG model: studies and simulations ongoing
- 2. Improve energy threshold \rightarrow noise reduction, improve energy resolution
- 3. Reduce background \rightarrow modifications and upgrades of the setup

Upgrade and improvements

Plans to improve noise level and reduce background:

- «Compton veto around the detector» set of Nal crystals to suppress multiple scattering events.
- Background level is currently testing at Baksan underground laboratory.
- Modifications of the cryocooler to reduce its power consumption and noise.

Upgrade and improvements

- New custom made DAQ with WF recording for a better discrimination of noise and surface events.
- Pulse shape analysis.

Counts

New detector with lower threshold?

27.08.2025

Other searches with vGeN

Magnetic moment

Limit, 10 ⁻¹¹ μ _B	Experiment	Type	Comment
7.5	νGeN	reactor	ON-OFF
7.4	TEXONO	reactor	ON-OFF
5.2	CONUS	reactor	ON-OFF
2.9	GEMMA	reactor	ON-OFF
0.64	XENONnT	solar	ON only

Astrophys.: $\mu_{\nu} < 1.2 \times 10^{-12} \mu_{B}$ [F. Capozzi, 2022]

Millicharge

Limit, 10 ⁻¹² e	Experiment	Туре	Comment
2.7	GEMMA	reactor	FEA
1.2	TEXONO	reactor	EPA
2.4 (0.9)	vGeN	reactor	FEA (EPA)
0.6	CONUS+	reactor	EPA
0.224	LZ	solar	MCRRPA

Matter neutrality: $q_{\nu}^{lim} \sim 10^{-35}$ [C. Caprini, 2003]

(preliminary results)

Conclusion

- Measurements with the ν GeN spectrometer at Kalinin Nuclear Power Plant are ongoing.
- The limit on the CEVNS rate for the Lindhard (k=0.162) QF is 4.3×SM (90% CL). Published at Chinese Physics C (2025),49, 5, 053004.
- Tension with Dresden-II (D1 QF) and vGeN result claim.
- The lab tests of the modifications to reduce background and improve the threshold are in the process.
- More than 2200 kgd of data has been accumulated so far. Data analysis and simulations for all available statistics are ongoing.
- New results with more statistics are expected soon.

