

#### **NEON Experiment**



#### **NEON** (Neutrino Elastic-scattering Observation with Nal)

Aims to observe Coherent Elastic Neutrino Nucleus Scattering (CEVNS) from reactor  $\bar{\nu}_e$  using NaI(TI) detector

Simultaneously, we use the intense photon flux from the reactor to search for dark sector particles.

~20 collaborators with experience on NaI and/or reactor experiments **NEOS COSINE-100** 





See Seohyun's talk for CEVNS measurement

Neutrino session, Today 6:00 PM

#### **Experimental Site**





#### Reactor photons





#### Reactor dark sector bosonic particles





#### **Physics Operation**



Reactor ON

Calibration



- Physics run started in April 2022 (> 3 years)
  - ❖ ~95% DAQ efficiency
- 723 days of ON data
- 223 days of OFF data
- 140 days of Na22 calibration

#### Detector performance





**Stable performance over two years of operation** 



#### Analyzed data



#### **Initial Analysis**



Initial analyses used data collected during April/2022 ~ June/2023

### Background understanding







- Background understanding is based on our experience with COSINE-100 dark matter search experiment
  - ❖ EPJC 78 (2018) 490; EPJC 81 (2021) 837; EPJC 85, 32 (2025)
- 3 keV 3 MeV are modeled

### Axion-Like Particle (ALP)



PRL 124, 211804 (2020) & JHEP 03, 294 (2021)



#### ALP signals in NEON detector



#### **Expected ALP signals in the NEON detector**



### Comparison of Reactor-on and -off Data





### <sup>222</sup>Rn contribution





### NEON On – Off data with Modeling





#### ALP search data (detector 6)



#### NEON data (reactor on – off)



•  $\chi^2$  fit to data with the expected time-dependent backgrounds and ALP signals

Institute for Basic Science (IBS)

### New Constraints on ALP Couplings from NEON





- This work partially probes the "Cosmological Triangle" region
- Best limits at around 1 MeV ALP mass on both photon and electron couplings

#### Light Dark Matter Search



Through light dark matter (LDM) production



COHERENT LDM-nucleon scattering: PRL 130, 051803 (2023)

#### Theory study: JHEP 11 (2018) 066



ence (IBS)

### Light Dark Matter Signals



- We generate the light dark matter signal in NEON detector
- We assume  $m_{A'}=3m_\chi$
- Apply atomic ionization factor PRD 108, 083030 (2023)



Region of Interest

1 – 10 keV

Apply detector responses

### Light Dark Matter (LDM) Search









Perform a  $\chi^2$  fit to Reactor on



Center for Undergrou

Hyun Su Lee.

Signal region: 1-10 keV



#### World-Leading Limits on LDM from NEON



No signal excess – 90% confidence level upper limit



- Best Limits achieved for the Light Dark Matter Search.
- Below 1 MeV/c<sup>2</sup>, NEON shows the best limit for DM-electron cross section and the kinetic mixing parameter for the dark photon.

### Dark photon search (another channel)





**Detection: Dark Photon Absorption** 

(Inverse Compton-like process)

eory study: PRL 119 (2017) 081801 Jupiter Earth Rydberg Coulomb CMB **TEXONO** Solar Lifetime -12

 $\text{Log}_{10} m_A \text{,[eV]}$ 

#### **Ongoing analysis**

**Detector** 



A generator for dark photon interaction in the NEON detector has developed. It will be incorporated into the detector simulation to extract the dark photon signal.

#### Summary



- The ALP search explore "cosmological triangle" for the first time
- Light dark matter search extended low-mass dark matter parameter space as low as 1 keV with the world best limit
- This work demonstrates the advantages of using nuclear reactors for dark sector searches and provides results that are supplementary to other experiments.

Hyun Su Lee.



#### Seasonal variation of <sup>222</sup>Rn level



## Radon eye measurement by NEOS experiment





#### Calibration holes were not closed



# <sup>222</sup>Rn level is higher at summer

ics (CUP), Institute for Basic Science (IBS)

### **ALP** signal generation

#### ALP events rate at NEON detector site

