3-Dimensional WIMP Effective Velocity Distribution

Chung-Lin Shan

TAUP 2025, Xichang, Sichuan, China August 26, 2025

Based on arXiv:2103.06485, 2103.06883

Questions

Arguments

3-D Monte Carlo elastic WIMP-nucleus scattering simulation

Numerical results

Radial component (magnitude)

Angular component (direction)

Angular distribution of the 3-D average kinetic energy

Forward-backward asymmetry

Summary

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

A1: Yes?

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

A1: Yes?

Q2: Does the WIMPs scattering off Ar or Xe nuclei have the same 3-D velocity distribution as the WIMPs scattering off Si or Ge nuclei?

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

A1: Yes?

Q2: Does the WIMPs scattering off Ar or Xe nuclei have the same 3-D velocity distribution as the WIMPs scattering off Si or Ge nuclei?

A2: Yes?

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

A1: Yes?

Q2: Does the WIMPs scattering off Ar or Xe nuclei have the same 3-D velocity distribution as the WIMPs scattering off Si or Ge nuclei?

A2: Yes?

Q3: Once one can reconstruct the (3-D) velocity distribution of WIMPs by using (directional) direct detection data, is the reconstructed (3-D) velocity distribution indeed that of the entire halo WIMPs?

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

A1: Yes?

Q2: Does the WIMPs scattering off Ar or Xe nuclei have the same 3-D velocity distribution as the WIMPs scattering off Si or Ge nuclei?

A2: Yes?

□ Q3: Once one can reconstruct the (3-D) velocity distribution of WIMPs by using (directional) direct detection data, is the reconstructed (3-D) velocity distribution indeed that of the entire halo WIMPs?

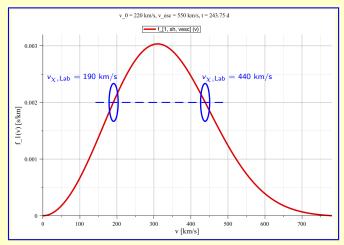
A3: Yes?

Q1: Does the subgroup of WIMPs scattering off target nuclei have the same 3-D velocity distribution as the main group of the entire halo WIMPs (impinging on a (directional) direct Dark Matter detector but not necessarily scattering off target nuclei)?

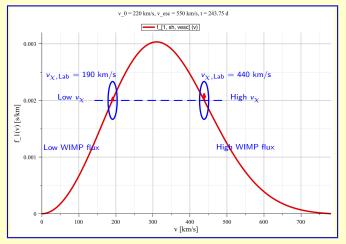
A1: No...

□ Q2: Does the WIMPs scattering off Ar or Xe nuclei have the same 3-D velocity distribution as the WIMPs scattering off Si or Ge nuclei?

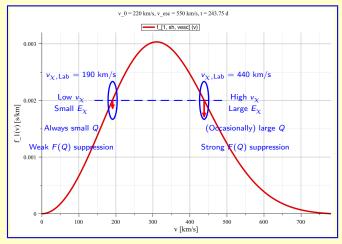
A2: No...


□ Q3: Once one can reconstruct the (3-D) velocity distribution of WIMPs by using (directional) direct detection data, is the reconstructed (3-D) velocity distribution indeed that of the entire halo WIMPs?

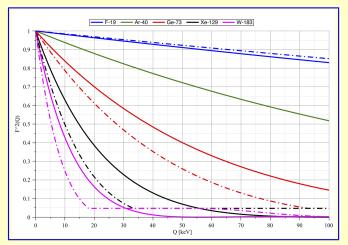
A3: Not directly?? \implies Yes??


☐ Shifted Maxwellian velocity distribution

☐ Arguments

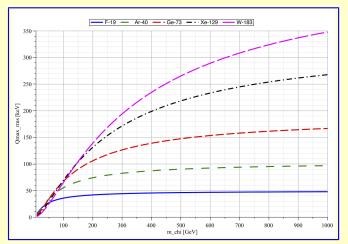

□ Proportionality of the WIMP flux to the incident velocity

☐ Arguments


☐ Cross section (nuclear form factor) suppression

Arguments

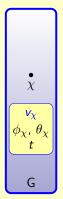
☐ Recoil-energy dependence of the nuclear form factor



 $[\mathsf{CLS},\ \mathsf{arXiv:}2103.06883\ (2021)]$

☐ Arguments

 \square WIMP-mass dependence of the maximal transferable recoil energy $Q_{\max, rms}$



3-D Monte Carlo "scattering-by-scattering" elastic WIMP-nucleus scattering simulation

☐ Simulation workflow

 $[\mathsf{CLS},\ \mathsf{arXiv}{:}2103.06485\ (2021)]$

- □ 3-D velocity distribution of Galactic WIMPs
 - ➤ Simple Maxwellian velocity distribution

$$\mathit{f}_{\chi,\mathsf{G},\mathsf{r}}(\mathit{v}_{\chi,\mathsf{G}}) = \left[\left(\frac{\sqrt{\pi}}{4} \right) \mathsf{erf} \left(\frac{\mathit{v}_{\mathsf{esc}}}{\mathit{v}_0} \right) - \left(\frac{\mathit{v}_{\mathsf{esc}}}{2\mathit{v}_0} \right) e^{-\mathit{v}_{\mathsf{esc}}^2/\mathit{v}_0^2} \right]^{-1} \left(\frac{\mathit{v}_{\chi,\mathsf{G}}^2}{\mathit{v}_0^3} \right) e^{-\mathit{v}_{\chi,\mathsf{G}}^2/\mathit{v}_0^2} \qquad \text{for } \mathit{v}_{\chi,\mathsf{G}} \leq \mathit{v}_{\mathsf{esc}} = 0$$

- □ 3-D velocity distribution of Galactic WIMPs
 - > Simple Maxwellian velocity distribution

$$f_{\chi,\mathsf{G},\mathsf{r}}(\mathsf{v}_{\chi,\mathsf{G}}) = \left[\left(\frac{\sqrt{\pi}}{4} \right) \operatorname{erf} \left(\frac{\mathsf{v}_{\mathsf{esc}}}{\mathsf{v}_0} \right) - \left(\frac{\mathsf{v}_{\mathsf{esc}}}{2\mathsf{v}_0} \right) \operatorname{e}^{-\mathsf{v}_{\mathsf{esc}}^2/\mathsf{v}_0^2} \right]^{-1} \left(\frac{\mathsf{v}_{\chi,\mathsf{G}}^2}{\mathsf{v}_0^3} \right) \operatorname{e}^{-\mathsf{v}_{\chi}^2,\mathsf{G}/\mathsf{v}_0^2} \qquad \text{for } \mathsf{v}_{\chi,\mathsf{G}} \leq \mathsf{v}_{\mathsf{esc}} + \mathsf{v}_{\mathsf{esc}} + \mathsf{v}_{\mathsf{G}} + \mathsf{$$

Angular distribution

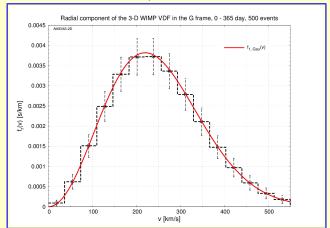
$$f_{\chi,\mathsf{G},\phi}(\phi_{\chi,\mathsf{G}}) = 1$$
 $\phi_{\chi,\mathsf{G}} \in (-\pi, \pi]$

$$f_{\chi,\mathsf{G}, heta}(heta_{\chi,\mathsf{G}}) = 1$$
 $heta_{\chi,\mathsf{G}} \in [-\pi/2,\ \pi/2]$

- □ 3-D velocity distribution of Galactic WIMPs
 - ➤ Simple Maxwellian velocity distribution

$$\mathit{f}_{\chi,\mathsf{G},\mathsf{r}}(\mathsf{v}_{\chi,\mathsf{G}}) = \left[\left(\frac{\sqrt{\pi}}{4} \right) \mathsf{erf} \left(\frac{\mathsf{v}_{\mathsf{esc}}}{\mathsf{v}_0} \right) - \left(\frac{\mathsf{v}_{\mathsf{esc}}}{2\mathsf{v}_0} \right) \mathsf{e}^{-\mathsf{v}_{\mathsf{esc}}^2/\mathsf{v}_0^2} \right]^{-1} \left(\frac{\mathsf{v}_{\chi,\mathsf{G}}^2}{\mathsf{v}_0^3} \right) \mathsf{e}^{-\mathsf{v}_{\chi,\mathsf{G}}^2/\mathsf{v}_0^2} \qquad \mathsf{for} \; \mathsf{v}_{\chi,\mathsf{G}} \leq \mathsf{v}_{\mathsf{esc}}$$

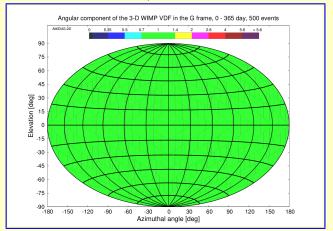
> Angular distribution


$$\begin{split} f_{\chi,\mathsf{G},\phi}(\phi_{\chi,\mathsf{G}}) &= 1 & \phi_{\chi,\mathsf{G}} \in (-\pi,\ \pi] \\ f_{\chi,\mathsf{G},\theta}(\theta_{\chi,\mathsf{G}}) &= 1 & \theta_{\chi,\mathsf{G}} \in [-\pi/2,\ \pi/2] \end{split}$$

> Time dependence

$$f_t(t) = 1$$
 $t \in [t_{\mathsf{start}}, \ t_{\mathsf{end}}]$

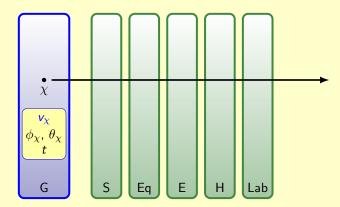
□ Radial component (magnitude) of the 3-D WIMP velocity distribution (Galactic frame, 0 - 365 day, 500 events)



[CLS, arXiv:2103.06485 (2021)]

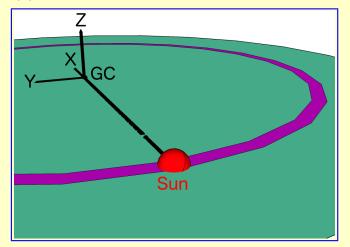
p. 13

☐ Angular component (direction) of the 3-D WIMP velocity distribution (Galactic frame, 0 - 365 day, 500 events)

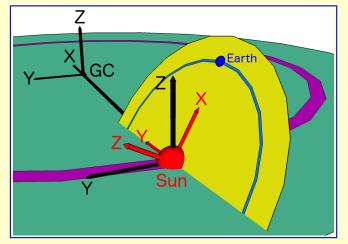


[CLS, arXiv:2103.06485 (2021)]

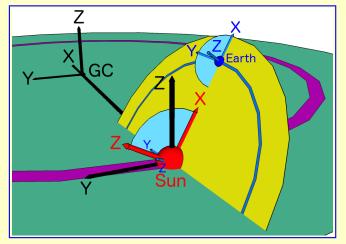
p. 14



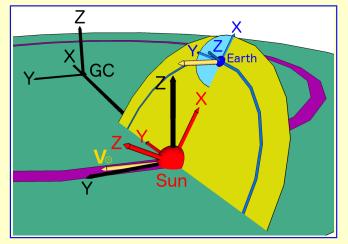
□ Simulation workflow



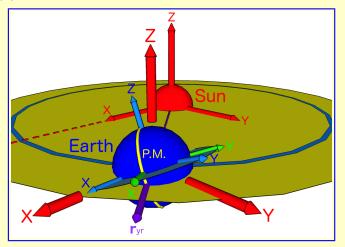
□ Galactic (G) coordinate system



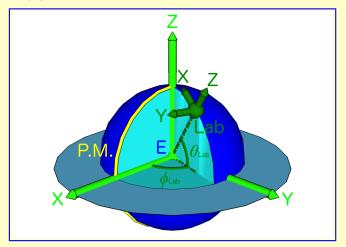
□ Ecliptic (S) coordinate system



□ Equatorial (Eq) coordinate system

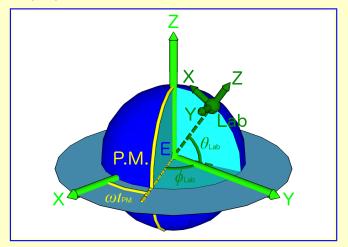


□ Equatorial (Eq) coordinate system



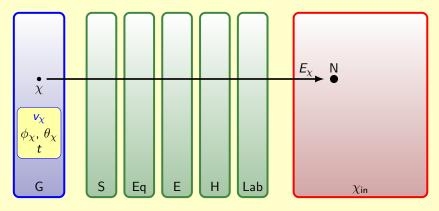
□ Earth (E) coordinate system

☐ Horizontal (H) coordinate system

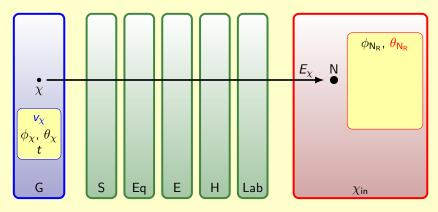


[CLS, arXiv:1905.11279 (2019)]

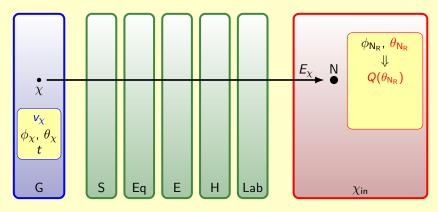
p. 19



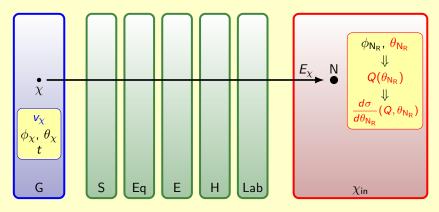
□ Laboratory (Lab) coordinate system



□ Simulation workflow

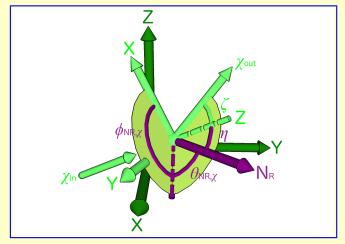


■ Simulation workflow



□ Simulation workflow

■ Simulation workflow



 \Box Incoming-WIMP (χ_{in}) coordinate system

☐ Orientation of the scattering plane and the (equivalent) recoil angle

- Scattering simulation
 - > Azimuthal distribution

$$f_{\mathsf{NR},\chi_{\mathsf{in}},\phi}(\phi_{\mathsf{NR},\chi_{\mathsf{in}}})=1$$

$$\phi_{\mathsf{N}_\mathsf{R},\chi_\mathsf{in}} \in (-\pi,\;\pi]$$

- Scattering simulation
 - Azimuthal distribution

$$f_{\mathsf{NR},\chi_{\mathsf{in}},\phi}(\phi_{\mathsf{NR},\chi_{\mathsf{in}}}) = 1$$
 $\phi_{\mathsf{NR},\chi_{\mathsf{in}}} \in (-\pi, \pi]$

> Recoil energy of the scattered target nucleus

$$Q(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) = \left[\frac{4m_{\chi} m_{\mathsf{N}}}{(m_{\chi} + m_{\mathsf{N}})^2} E_{\chi}\right] \sin^2(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) \qquad E_{\chi} = \frac{1}{2} m_{\chi} v_{\chi,\mathsf{Lab}}^2 \qquad \theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}} \in [0, \ \pi/2]$$

- Scattering simulation
 - Azimuthal distribution

$$f_{\mathsf{NR},\chi_{\mathsf{in}},\phi}(\phi_{\mathsf{NR},\chi_{\mathsf{in}}}) = 1$$
 $\phi_{\mathsf{NR},\chi_{\mathsf{in}}} \in (-\pi,\ \pi]$

> Recoil energy of the scattered target nucleus

$$Q(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) = \begin{bmatrix} \frac{4m_{\chi}m_{\mathsf{N}}}{(m_{\chi}+m_{\mathsf{N}})^2} E_{\chi} \end{bmatrix} \sin^2(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) \qquad E_{\chi} = \frac{1}{2} m_{\chi} v_{\chi,\mathsf{Lab}}^2 \qquad \theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}} \in [0,\ \pi/2]$$

 Cross section (nuclear form factor) suppression on the equivalent recoil angle

$$\begin{split} d\sigma &= \frac{1}{v_{\chi, \text{Lab}}^2} \left(\frac{\sigma_0}{4m_{\text{r}, \text{N}}^2} \right) F^2(q) \, dq^2 = \frac{1}{v_{\chi, \text{Lab}}^2} \left(\frac{m_{\text{N}}}{2m_{\text{r}, \text{N}}^2} \right) \sigma_0 F^2(Q) \, dQ \qquad \qquad q = \sqrt{2m_{\text{N}}Q} \\ \frac{d\sigma}{d\theta_{\text{N}_{\text{P}, \text{Y}in}}} &= \left[\sigma_0^{\text{SI}} F_{\text{SI}}^2 \left(Q(\theta_{\text{N}_{\text{R}}, \chi_{\text{in}}}) \right) + \sigma_0^{\text{SD}} F_{\text{SD}}^2 \left(Q(\theta_{\text{N}_{\text{R}}, \chi_{\text{in}}}) \right) \right] \sin(2\theta_{\text{N}_{\text{R}}, \chi_{\text{in}}}) \end{split}$$

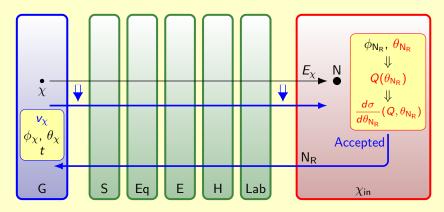
- Scattering simulation
 - Azimuthal distribution

$$f_{\mathsf{NR},\chi_{\mathsf{in}},\phi}(\phi_{\mathsf{NR},\chi_{\mathsf{in}}}) = 1 \qquad \qquad \phi_{\mathsf{NR},\chi_{\mathsf{in}}} \in (-\pi,\ \pi]$$

> Recoil energy of the scattered target nucleus

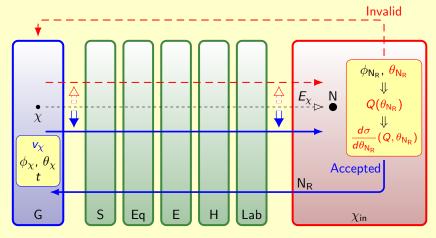
$$Q(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) = \begin{bmatrix} \frac{4m_{\chi}m_{\mathsf{N}}}{(m_{\chi}+m_{\mathsf{N}})^2} E_{\chi} \end{bmatrix} \sin^2(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) \qquad E_{\chi} = \frac{1}{2}m_{\chi}v_{\chi,\mathsf{Lab}}^2 \qquad \theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}} \in [0,\ \pi/2]$$

Cross section (nuclear form factor) suppression on the equivalent recoil angle

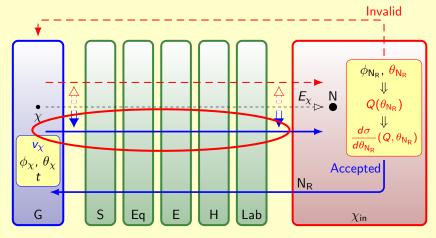

$$\begin{split} d\sigma &= \frac{1}{v_{\chi,\text{Lab}}^2} \left(\frac{\sigma_0}{4m_{r,N}^2} \right) F^2(q) dq^2 = \frac{1}{v_{\chi,\text{Lab}}^2} \left(\frac{m_\text{N}}{2m_{r,N}^2} \right) \sigma_0 F^2(Q) dQ \qquad q = \sqrt{2m_\text{N}Q} \\ \frac{d\sigma}{d\theta_{\text{N}_\text{R}},\chi_{\text{in}}} &= \left[\sigma_0^{\text{SI}} F_{\text{SI}}^2 \left(Q(\theta_{\text{N}_\text{R}},\chi_{\text{in}}) \right) + \sigma_0^{\text{SD}} F_{\text{SD}}^2 \left(Q(\theta_{\text{N}_\text{R}},\chi_{\text{in}}) \right) \right] \sin(2\theta_{\text{N}_\text{R}},\chi_{\text{in}}) \end{split}$$

> Generating probability distribution of the equivalent recoil angle

$$f_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}},\theta}(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}}) = \left(\frac{v_{\chi,\mathsf{Lab}}}{v_{\chi,\mathsf{cutoff}}}\right) \left[\sigma_0^{\mathsf{SI}} F_{\mathsf{SI}}^2\left(Q(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}})\right) + \sigma_0^{\mathsf{SD}} F_{\mathsf{SD}}^2\left(Q(\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}})\right)\right] \sin(2\theta_{\mathsf{N}_{\mathsf{R}},\chi_{\mathsf{in}}})$$
[CLS, arXiv:2103.06485 (2021)]



□ Simulation workflow



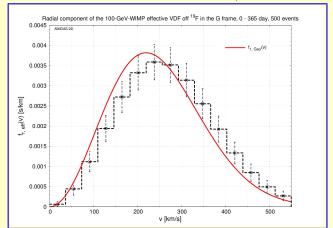
■ Simulation workflow

■ Simulation workflow

Numerical results

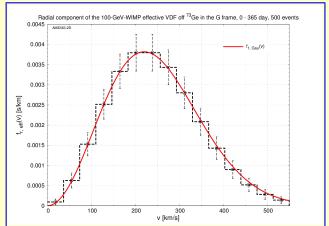
-Numerical results

Radial component (magnitude) in the Galactic coordinate system



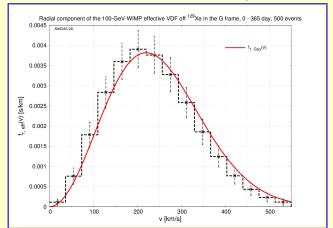
Radial component (magnitude) in the Galactic coordinate system

Radial component


(100 GeV, off ¹⁹F, Galactic frame, 0 - 365 day, 500 events)

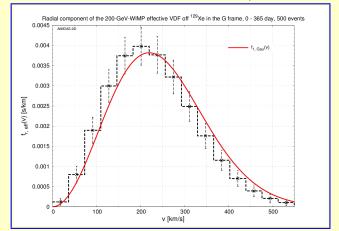
Radial component

(100 GeV, off 73 Ge, Galactic frame, 0 - 365 day, 500 events)


[CLS, arXiv:2103.06883 (2021)]

p. 27

Radial component


(100 GeV, off ¹²⁹Xe, Galactic frame, 0 - 365 day, 500 events)

Radial component

(200 GeV, off ¹²⁹Xe, Galactic frame, 0 - 365 day, 500 events)

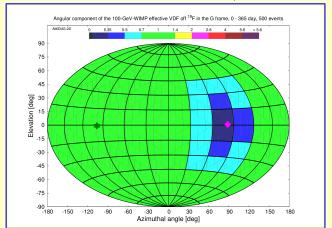
Radial component (magnitude) in the Galactic coordinate system

3-D WIMP effective velocity distribution in the Galactic frame

☐ Annual modulation of the radial component			
(100 GeV, off ⁷³ Ge, Galactic frame,	day, 500 events)		

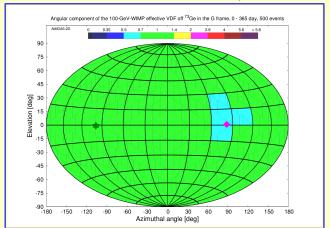
 $[\mathsf{CLS},\ \mathsf{arXiv}{:}2103.06883\ (2021)]$

Numerical results

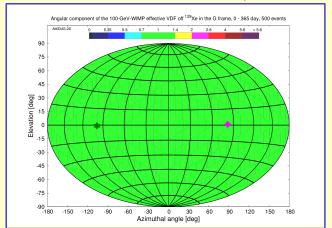


Angular component (direction) in the Galactic coordinate system

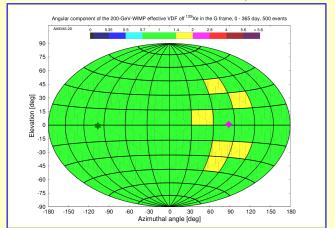
Angular component


(100 GeV, off ¹⁹F, Galactic frame, 0 - 365 day, 500 events)

Angular component


(100 GeV, off ⁷³Ge, Galactic frame, 0 - 365 day, 500 events)

Angular component


(100 GeV, off ¹²⁹Xe, Galactic frame, 0 - 365 day, 500 events)

Angular component

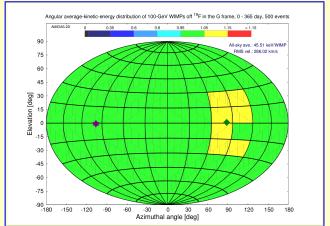
(200 GeV, off ¹²⁹Xe, Galactic frame, 0 - 365 day, 500 events)

Angular component (direction) in the Galactic coordinate system

3-D WIMP effective velocity distribution in the Galactic frame

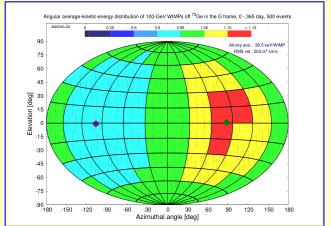
□ Annual modulation of the angular component			
(<mark>100</mark> GeV,	off ⁷³ Ge, Galactic frame,	day, 500 events)	

 $[\mathsf{CLS},\ \mathsf{arXiv:}2103.06883\ (2021)]$

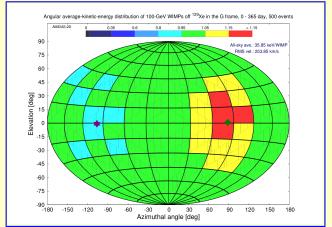


Angular distribution of the 3-D average kinetic energy in the Galactic coordinate system

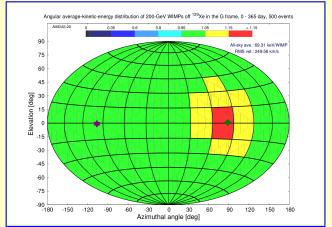
3-D WIMP effective velocity distribution in the Galactic frame


Angular distribution of the 3-D average kinetic energy (100 GeV, off ¹⁹F, Galactic frame, 0 - 365 day, 500 events)

3-D WIMP effective velocity distribution in the Galactic frame


Angular distribution of the 3-D average kinetic energy (100 GeV, off ⁷³Ge, Galactic frame, 0 - 365 day, 500 events)

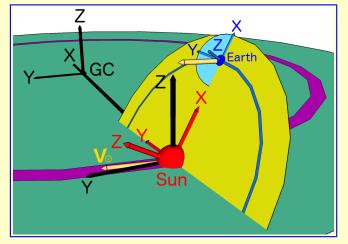
3-D WIMP effective velocity distribution in the Galactic frame


Angular distribution of the 3-D average kinetic energy (100 GeV, off ¹²⁹Xe, Galactic frame, 0 - 365 day, 500 events)

3-D WIMP effective velocity distribution in the Galactic frame

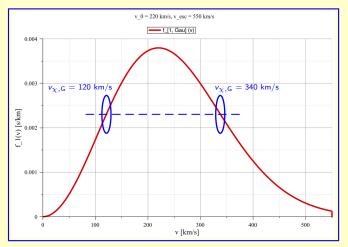
□ Angular distribution of the 3-D average kinetic energy (200 GeV, off ¹²⁹Xe, Galactic frame, 0 - 365 day, 500 events)

3-D WIMP effective velocity distribution in the Galactic frame

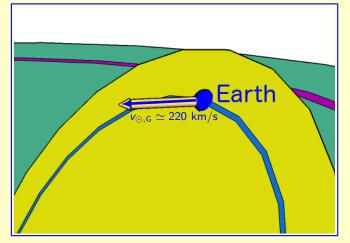

		average-kinetic-energy distribu	tion
(100 GeV,	off ⁷³ Ge, Galactic frame,	day, 500 events)	

Forward-backward asymmetry of the 3-D WIMP Galactic effective velocity distribution

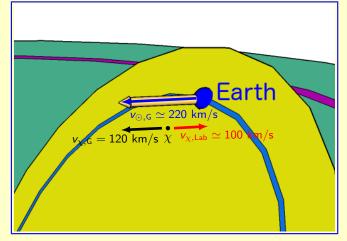
□ Solar movement in the Dark Matter halo



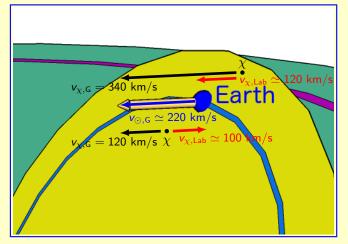
[CLS, arXiv:1905.11279 (2019)]



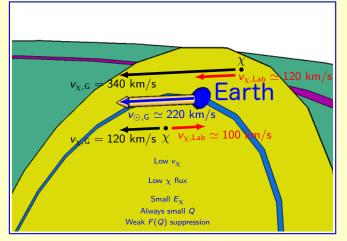
□ Simple Maxwellian velocity distribution


□ Forward-backward asymmetry

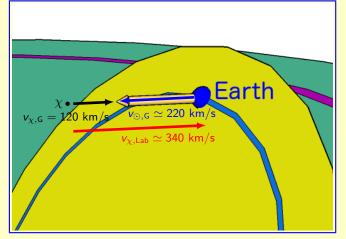
└─ Forward-backward asymmetry


Forward-backward asymmetry of the 3-D WIMP G. eff. vel. dist.

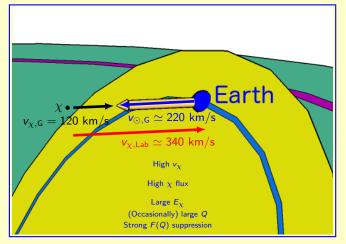
☐ Forward-backward asymmetry



☐ Forward-backward asymmetry



□ Forward-backward asymmetry


□ Forward-backward asymmetry

□ Forward-backward asymmetry

[CLS, arXiv:2103.06883 (2021)]

p. 47

□ We developed our full Monte Carlo "scattering-by-scattering" simulation for the "3-dimensional" elastic WIMP-nucleus scattering process

- ☐ We developed our full Monte Carlo "scattering-by-scattering" simulation for the "3-dimensional" elastic WIMP-nucleus scattering process
- By taking into account
 - > the relation between the WIMP incident velocity, the (equivalent) recoil angle, and the nuclear recoil energy

- □ We developed our full Monte Carlo "scattering-by-scattering" simulation for the "3-dimensional" elastic WIMP-nucleus scattering process
- By taking into account
 - > the relation between the WIMP incident velocity, the (equivalent) recoil angle, and the nuclear recoil energy
 - the cross section (nuclear form factor) suppression on the nuclear recoil energy and in turn on the (equivalent) recoil angle and the WIMP incident velocity

- □ We developed our full Monte Carlo "scattering-by-scattering" simulation for the "3-dimensional" elastic WIMP-nucleus scattering process
- By taking into account
 - > the relation between the WIMP incident velocity, the (equivalent) recoil angle, and the nuclear recoil energy
 - the cross section (nuclear form factor) suppression on the nuclear recoil energy and in turn on the (equivalent) recoil angle and the WIMP incident velocity
- Without using
 - ➤ a theoretically estimated spectrum of 1-D/3-D elastic WIMP-nucleus scattering

- □ We developed our full Monte Carlo "scattering-by-scattering" simulation for the "3-dimensional" elastic WIMP-nucleus scattering process
- By taking into account
 - > the relation between the WIMP incident velocity, the (equivalent) recoil angle, and the nuclear recoil energy
 - the cross section (nuclear form factor) suppression on the nuclear recoil energy and in turn on the (equivalent) recoil angle and the WIMP incident velocity
- Without using
 - ➤ a theoretically estimated spectrum of 1-D/3-D elastic WIMP-nucleus scattering
 - a theoretically calculated 1-D WIMP velocity distribution in the laboratory frame

□ We demonstrated the 3-D "effective" velocity distribution of WIMPs scattering off target nuclei and its asymmetric forward-backward asymmetry

- We demonstrated the 3-D "effective" velocity distribution of WIMPs scattering off target nuclei and its asymmetric forward-backward asymmetry
 - ➤ The anisotropy of the angular component of the 3-D WIMP effective velocity distribution in the Galactic coordinate system

- We demonstrated the 3-D "effective" velocity distribution of WIMPs scattering off target nuclei and its asymmetric forward-backward asymmetry
 - ➤ The anisotropy of the angular component of the 3-D WIMP effective velocity distribution in the Galactic coordinate system
 - Depends on
 - the energy window
 - the target nucleus
 - the WIMP mass

- We demonstrated the 3-D "effective" velocity distribution of WIMPs scattering off target nuclei and its asymmetric forward-backward asymmetry
 - ➤ The anisotropy of the angular component of the 3-D WIMP effective velocity distribution in the Galactic coordinate system
 - Depends on
 - the energy window
 - the target nucleus
 - the WIMP mass
 - WIMPs moving in the same direction as the laboratory/detector would have
 - (much) lower probabilities to scatter off light target nuclei,
 - but, once WIMPs are heavy, higher probabilities to scatter off heavy target nuclei,

than WIMPs moving in the opposite direction

- We demonstrated the 3-D "effective" velocity distribution of WIMPs scattering off target nuclei and its asymmetric forward-backward asymmetry
 - ➤ The anisotropy of the angular component of the 3-D WIMP effective velocity distribution in the Galactic coordinate system
 - Depends on
 - the energy window
 - the target nucleus
 - the WIMP mass
 - WIMPs moving in the same direction as the laboratory/detector would have
 - (much) lower probabilities to scatter off light target nuclei,
 - but, once WIMPs are heavy, higher probabilities to scatter off heavy target nuclei,

than WIMPs moving in the opposite direction

The forward-moving and scattering WIMPs would always have larger average velocity/kinetic energy than the backward-moving WIMPs