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Axionlike particles (ALPs) can be produced in the Sun and are considered viable candidates for the
cosmological dark matter (DM). It can decay into two photons or interact with matter. We identify new
inelastic channels of inverse Primakoff processes due to atomic excitation and ionization. Their cross
sections are derived by incorporating full electromagnetic fields of atomic charge and current densities, and
computed by well-benchmarked atomic many-body methods. Complementing data from the underground
XENONNT and surface TEXONO experiments are analyzed. Event rates and sensitivity reaches are
evaluated with respect to solar- and DM-ALPs. New parameter space in ALP couplings with the photons
versus ALP masses in (1 eV-10 keV) not previously accessible to laboratory experiments are probed and
excluded with solar-ALPs. However, at regions where DM-ALPs have already decayed, there would be no
ALP-flux and hence, no interactions at the detectors in direct search experiments. No physics constraints
can be derived. Future projects would be able to evade the stability bound and open new observable
windows in (100 eV-1 MeV) for DM-ALPs.
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Axions & ALPs : Portal to New Physics

v’ Some phenomena cannot be explained with current SM: A X I 0 N S
a. Strong CP problem b

b. The existence of DM ’

v/ Axion - first introduced in 1970s as a solution to the
strong CP problem in QCD

v Axionlike Particles (ALPs) — Variants of QCD axions —
not necessarily solutions to the strong CP problem

v’ Sources of ALPs:
(a) Dark Matter

(b) Sun

(Sandbox Studio, Chicago, Symmetry Magazine/Fermilab and SLAC)

Coupling of ALPs to photons, 8oy " chances to explore and understand the physics beyond SM
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Interaction Channels

Lagrangian:
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» We have focussed only on the processes
resulting from a finite L

Vacuum Decay (Two-Photon Decay — TPD):
a —r Y1+ 72
Inverse Primakoff (IP) interactions:

/

v+ A IP,; : elastic scattering

a+A—q Y+ A [P, : atomic excitation
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Double-pole Enhancement for IP__

Differential cross section of the ALP IP processes:

m,=1keV, v,=10""c
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and for m_= 0 S 10754
» Full calculation: Atomic wave functions using FCA
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» EPA is a good approximation in Q?= 0 region T (eV)

For NR ALPs, IP, has double pole enhancement near T = m /2




Dark Matter ALPs

> IP. and TPD are dominant channels

> The percentage deviations between Full
calculation and EPA are < 3% in the
double pole region

> Event rate « (gaw)2

_ . e A n10
m, = 100 ¢V, g‘”?-10 GeV
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| | DM-ALP
TPD
L [ ---1p,

(Illustration by Sandbox Studio, Chicago with Ana Kova)
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Analysis and Results
TEXONO (Taiwan EXperiment On NeutrinO)

» Point Contact Ge detector technology

Kuo-Sheng Nuclear Power Station ; Reactor Building

Reactor Pressure Vessel

Auxiliary

> Low threshold — 300 eV _ PR

Primary

> Excellent Energy Resolution e Ground level

D Spans a large energy range — from 300 eV _to 3 MeV | eutrinotabom:

(Taiwan EXperiment On NeutrinO — History, Status and
Prospects, THE UNIVERSE, Vol. 3, No. 4, 22-37)



Analysis and Results
TEXONO (Taiwan EXperiment On NeutrinQ)

Kuo-Sheng Nuclear Power Station : Reactor Building
» Point Contact Ge detector technology P Vel
Augxiliary
> Low ; TEXONO NPC data Bullding
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Analysis and Results

XENONNT

» Liquid Xe as target — Tonne scale detector

> Energy range — from 1 keV_ to 140 keV

» Large Exposure
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Outer vessel

— Field Shaping Wires

— Resistor Chain

PTFE side reflector— &g || -~ B Guard Rings

i ) HV Feedthrough

Field shaping elements eeuroug:

Bottom PMT Array S i £ Bottom Screen
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(Eur. Phys. J. C, 84(8):784, 2024)




Analysis and Results

XENONNT

> L
»E

>L
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XENONNT LE data
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Exclusion Plots — DM ALP
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Exclusion Plots — DM ALP

DM - ALP (b)
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Summary

w Identified new detection channel (IP, ) to probe - for laboratory-based experimental searches.
w [P, _channel has discovery potential for the search of ALPs.

W Developed new sophisticated tool (FCA) for calculating cross-section for many-body systems.
W New tools are good at calculating cross-section above 80eV within 5% error.

w IP__sensitivities of future projects (DARWIN) would exceed the cosmological stability bound for DM-ALPs.

Future Prospects

W Comprehensive analysis of ALPs through a global approach considering the coupling between ALPs and photons,
as well as ALPs and electrons.

W Exploring reactor ALPs via IP and decay processes.
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FCA, RRPA & MCRRPA

> Frozen Core Approximation (FCA

® In FCA, core electrons in the system are treated as "frozen" or inert, meaning
their positions are fixed and do not participate in the calculation of the e - e interactions.

® By freezing the core electrons, the e- e interactions are effectively treated as a
perturbation on top of the frozen core.

> Relativistic Random Phase Approximation (RRPA)

® For many-body systems RPA can be used to account for collective effects
that influence the system's response to external perturbations.

> Multi-Configuration Relativistic Random Phase Approximation (MCRRPA)

® MCRRPA is a theoretical framework used to calculate cross sections for nuclear reactions
involving heavy nuclei, combining aspects of the multiconfiguration Dirac-Hartree-Fock
(MCDHF) method with the RRPA to account for both relativistic effects and collective excitations.
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