Dark Matter Annual Modulation Analysis with Combined Nuclear & Electron Recoil Channels Hau-Bin Li¹, M.K. Pandey^{1,2}, Manoj Kumar Singh¹, S. Karmakar¹, H.T. Wong¹ #### [On behalf of the TEXONO Collaboration] ¹Institute of Physics, Academia Sinica ²Department of Physics, Centre for Theoretical Physics, Leung Center for Cosmology and Particle Astrophysics, National Taiwan University # Dark matter annual modulation analysis with combined nuclear and electron recoil channels H. B. Li@, ^{1,*} M. K. Pandey®, ^{2,†} C. H. Leung, ¹ L. Singh, ^{3,1} H. T. Wong®, ^{1,‡} H.-C. Chi, ⁴ M. Deniz, ^{5,1} Greeshma C., ^{1,3} J.-W. Chen, ² H. C. Hsu, ¹ S. Karadağ, ^{1,6} S. Karmakar, ^{1,7} V. Kumar, ^{1,7} J. Li, ⁸ F. K. Lin, ¹ S. T. Lin, ^{9,1} C.-P. Liu, ⁴ S. K. Liu, ⁹ H. Ma, ⁸ D. K. Mishra, ^{3,1} K. Saraswat, ¹ V. Sharma, ^{10,1} M. K. Singh®, ^{1,11,§} M. K. Singh, ^{7,1} V. Singh, ^{3,11,1} D. Tanabe, ¹ J. S. Wang, ¹ C.-P. Wu, ^{2,4} L. T. Yang, ⁸ C. H. Yeh, ¹ and Q. Yue⁸ (TEXONO Collaboration) #### **Overview** - ☐ Introduction and Motivation - □Input Data - **□**Expected Spectra - **□**Cross Section - **□**Analysis - □ Results and Interpretations - **□**Summary and Conclusions #### **Introduction & Motivation** - Compelling Experimental Evidence (Cosmological Observations) ☐ One-quarter of Energy density of Universe == Composed of Dark Matter ☐ Exact Nature & Properties remain Unknown **Decades of Experimental Efforts** ■ Non-luminous & Non-baryonic ☐ Inferred Only from Gravitational Effects Only Result:: Consistent with Positive WIMP Signatures is from AM analysis on xN from DAMA/LIBRA (DL) [NaI(TI)] Search Efforts **►►► Challenged & Rejected::** Numerous Experiments + Variety of **□**Numerous Directions **Targets □**Diverse Techniques Attempts to Explain:: Scenarios other than xN detection [e.g. ☐ Intense areas of Fundamental Research complications in Analysis procedures] □ Favored Candidate | ■ WIMPs (χ) **Present Study::** Analysis including both χe & χN interactions Three Interactions:: SI χN^{SI}, Long & Short-range χe^{LR} & χe^{SR} Direct Experimental Search \square Assume Finite Interactions:: WIMPs with Electrons (χ_{α}) & Nuclei (χ_{α}) - **☑** Positive Signatures:: - **Excess Events** over known BKG [Measured Time-Integrated (TI) Energy Spectra] Sensitive to Uncertainties of BKG Modeling - Annual Modulation (AM) [Changes of Relative velocity between Earth & WIMPs in Galactic Halo] Only requires stable BKG with time & Independent of other details ## Input # 1. Published AM Amplitudes Data! - ☐ [NaI(TI)]:: [DL, ANAIS, COSINE], [Xe] XMASS, [Ge] CDEX - ☐ Complementary in Strength:: Probe Different Parameter Space # 2. Expected <u>Differential Spectra</u> $[\chi N^{SI}]$ - Origin:: Differences in χ-velocity relative to Earth - ☐ Maximum (minimum) Amplitudes :: June 1 (December 2) - ☐ Feature :: Drop from Enhancement to Deficit at LE - \square Turning Point $\longrightarrow m_{\gamma}$ -dependent #### Input 4. Cross-Section - I. Rapidly Rising Spectra - II. Only Data < 4 keVee Contribute to Analysis - **Σ** χε^{LR} Interactions has Additional 1/q² term - I. Rise More Steeper @ Low Recoil Energy - II. Favor experiments with Lower Detection Threshold - \square Very Different Response at LE from χN^{SI} - [Talk: Prof. Cheng-Pang Liu → ID 359 !] - **The Detection Channel** $\chi + A \rightarrow \chi + e^- + A^+$ - Frozen Core Approximation (FCA) PRD 102,123025 (2020) I. Experience on Ge & Xe Extend same approach to Na & I - II. Consistency Within ~ 5% [Across Energy Range of 1-30 keVee] - **III.** Identical Results [Whether Targets treated as **Atoms** or **Ions**] - **IV. Indicates::** Reliable Modeling to Interactions of χ with Atoms #### **Analysis** Best-fit Estimate Cross Sections @ Given m_{y} $$\chi^2 = \sum_{i} \frac{1}{\Delta_i^2} \{ n_i - [\sigma_{\chi N}^{SI} \phi_{\chi N}^{SI}(T_i) + \sigma_{\chi e}^{LR} \phi_{\chi e}^{LR}(T_i) + \sigma_{\chi e}^{SR} \phi_{\chi e}^{SR}(T_i) + 2\sqrt{\sigma_{\chi e}^{LR} \sigma_{\chi e}^{SR}} \phi_{\chi e}^{int}(T_i)] \}^2$$ $n_i & \Delta_i$ [AM Amplitudes & Uncertainties], ϕ [Normalized Spectral Functions] #### **DL Data::** - I. Positive AM Signatures & Reject Null Hypothesis [@ Large Significance] - II. Best-fit Spectra only with χN -channel $[\Gamma_N^0: \sigma^{LR}] = \sigma^{SR}] = 0$ - III. Analysis Expands :: All Three Channels as free fitting variables #### **Two DM Scenarios::** - 1. Parametrized by f_{γ} as DM Relic Density Fraction from χ interacting via χe - 2. $\Gamma^{1\chi}_{tot} \rightarrow \text{Both } \chi \text{N \& } \chi \text{e Interactions are due to a single } \chi (f_{\chi} = 1)$ [Same constraints on m_{χ} apply to All Channels] - 3. $\Gamma^{2\chi}_{tot}$ \Rightarrow Case of Independent constraints [Two different χ with fractional density f_{χ} & $(1-f_{\chi})$ interact separately via χe & χN] - 4. Limiting Case $(f_{\gamma} = 0) \rightarrow$ Corresponds to Baseline Γ^0_N # **Analysis** - Combined <u>best-fit</u> in $\Gamma^{1\chi}_{tot}$ == Spectra for $\Gamma^{2\chi}_{tot}$ Shifted m_{ν} from 54 GeV in Γ^{0}_{ν} to 83 GeV in Γ^{1}_{ν} - Addition of xe-Channels Better Description data < 4 keVee - <u>Interpretation</u> of DL data incorporating $\Gamma^{(1\chi,2\chi)}$...: - I. Statistical Significance higher than Γ^0_N alone - II. LE data (1-4 keVee) gives p-values of 0.52 for $\Gamma^{(1\chi,2\chi)}$ but only 0.07 for Γ^0_N - III. Differences in $\chi^2/d.o.f.$ between Γ^0_N & $\Gamma^{(1\chi,2\chi)}_{tot}$ p-values of 0.02 & 0.008 - IV. For Complete 1-20 keV dataset :: $\chi^2/\text{d.o.f.}$ in $\Gamma^{(1\chi,2\chi)}$ Implies Additional physical processes ($\chi e^{LR} \& \chi e^{SR}$) to Explain AM spectrum - Suggests a Scenario Published uncertainties are overestimated - V. TEST Case :: Uncertainties of DL data Uniformly reduced by 20% - Resulting in p-value = 0.5 - Γ Tension against Γ^0_N as a Valid Hypothesis is Stronger - $\Gamma^{(1\chi,2\chi)}$ shows a Perfect Agreement with Data | aplita | | | | |--------------------|--------------------------------------|---|------------| | AM Amplitu | Best-Fit $m_{\chi} = 83 \text{ GeV}$ | | | | ~ 333 <u>- 1</u> 0 | 2 4 6 | 8 10 12 14
T (keV _{ee}) | 16 18 | | | Γ^0_{N} :: χN^{SI} | $\Gamma^{(1\chi,2\chi)}_{tot} :: \chi \mathbf{N}^{\mathrm{SI}} + \chi \mathbf{e}^{\mathrm{LR}} + \chi \mathbf{e}^{\mathrm{SR}}$ | Compare | | Data | | χ²/d.o.f. | Δχ²/d.o.f. | | ₹ -0.01 | 2 4 6 | 8 10 12 14
T (keV _{ee}) | 16 18 2 | |-----------------|---------------------------------|--|-------------------------| | | Γ^0_{N} :: χN^{SI} | $\Gamma^{(1\chi,2\chi)}_{tot} :: \chi \mathbf{N}^{SI} + \chi \mathbf{e}^{LR} + \chi \mathbf{e}^{SR}$ | Compare | | Data
(keVee) | χ²/d.o.f.
(p-value) | | Δχ²/d.o.f.
(p-value) | | | Pi | ublished Data | | | | $\chi_{\mathbf{N}^{\mathrm{SI}}}$ | $ \begin{array}{c} \Gamma^{(1\chi,2\chi)} & :: \\ \chi N^{SI} + \chi e^{LR} + \chi e^{SR} \end{array} $ | Compare | |-----------------|-----------------------------------|---|---------| | Data
(keVee) | (| Δχ²/d.o.f.
(p-value) | | | | Pı | ıblished Data | | | 1-20 | 32.06/36 | 22.40/34 | 9.66/2 | | | | · ee- | | |-----------------|---------------------------------|--|-------------------------| | | Γ^0_{N} :: χN^{SI} | $\Gamma^{(1\chi,2\chi)}_{tot}::$ $\chi N^{SI} + \chi e^{LR} + \chi e^{SR}$ | Compare | | Data
(keVee) | χ²/d.o.f.
(p-value) | | Δχ²/d.o.f.
(p-value) | | | Pı | ublished Data | | | 1-20 | 32.06/36
(0.66) | 22.40/34
(0.94) | 9.66/2
(0.008) | | | | | | | \ ee' | | | | | |-----------------|---------------------------------|--|-------------------------|--| | | Γ^0_{N} :: χN^{SI} | $\Gamma^{(1\chi,2\chi)}_{tot} :: \chi \mathbf{N}^{SI} + \chi \mathbf{e}^{LR} + \chi \mathbf{e}^{SR}$ | Compare | | | Data
(keVee) | χ²/d.o.f.
(p-value) | | Δχ²/d.o.f.
(p-value) | | | | Pi | ublished Data | | | | 1-20 | 32.06/36
(0.66) | 22.40/34
(0.94) | 9.66/2
(0.008) | | | 1-4 | 8.6/4 | 1.3/2 | 7.26/2 | | | | Γ^0_{N} :: χN^{SI} | $\Gamma^{(1\chi,2\chi)}_{tot} :: \chi N^{SI} + \chi e^{LR} + \chi e^{SR}$ | Compare | | |----------------|---------------------------------|---|------------|--| | Data | χ²/d.o.f. | | Δχ²/d.o.f. | | | (keVee) | (p-value) | | (p-value) | | | Published Data | | | | | | 1-20 | 32.06/36 | 22.40/34 | 9.66/2 | | | | (0.66) | (0.94) | (0.008) | | | 1-4 | 8.6/4 | 1.3/2 | 7.26/2 | | | | (0.07) | (0.52) | (0.02) | | Test Case (Effects or reduced uncertainties)* 33.33/34 (0.50)* 1.94/2 (0.38) 48.1/36 (0.086) 12.8/4 (0.012) 1-20 1-4 14.8/2 (0.0006) 10.86/2_ (0.0044) ### **Analysis** - No AM Signatures Observed:: COSINE, ANAIS, XMASS, CDEX - **☑** Data consistent with Null Hypothesis - Predicted Spectra for Null AM Experiments - Solution Due to $\Gamma^{(1\chi,2\chi)}_{tot}$ best-fit values of (χN^{SI}, χe^{LR}, χe^{SR}) derived from DL AM data - Shows:: Incompatibility of DL best-fit values with Null AM Experiments # Results & Interpretations:: Case of $\Gamma^{1\chi}_{tot}$ Two Allowed Regions in Γ⁰_N:: @ Low & High m_χ Na & I-recoils With χe^{LR} & χe^{SR} Added in Γ^{1χ}_{tot}:: Only high m_χ Region [I-recoils] Allowed @ Same Significance Best-fit Solution of m_χ:: Shifted from 54 GeV in Γ⁰_N to 83 GeV in Γ^{1χ}_{tot} # Results & Interpretations:: Case of $\Gamma^{1\chi}_{tot}$ - Two Allowed Regions in Γ^0_N :: - @ Low & High m, Na & I-recoils - With χe^{LR} & χe^{SR} Added in $\Gamma^{1\chi}_{tot}$:: - Only high m_{χ} Region [I-recoils] \Longrightarrow Allowed - @ Same Significance - Best-fit Solution of m_{χ} :: Shifted from 54 GeV in $\Gamma^0_{\ N}$ to 83 GeV in $\Gamma^{1\chi}_{\ tot}$ m_{γ} (GeV) # Results & Interpretations:: Case of $\Gamma^{1\chi}_{to}$ Shifted from 54 GeV in Γ^{0}_{N} to 83 GeV in $\Gamma^{1\chi}_{tot}$ - Limiting Case of Best-fit value:: (a) σ^{LR}_{χe} = 0 || Light Red Circle [Allowed Region] - ▲ Interdependent Allowed Regions:: - I. Low Cross Section Portion of $[\sigma^{LR}_{\chi e}, \sigma^{SR}_{\chi e}]$ Allowed Regions remains Unprobed - II. Correlation Allowed Space:: Correlated with High Cross Section Region of its Counterparts Rejected by Null AM Experiments # Results & Interpretations:: Case of $\Gamma^{1\chi}_{tot}$ # Results & Interpretations:: Case of $\Gamma^{2\chi}$ $\Gamma_{tot}^{2\chi}$: $m_{\gamma} = 1 \pm 0.1 \text{ GeV}$ #### **Summary and Conclusions** "First analysis":: Explores How χe AM can Play a Role in DL AM Present Study:: Expand Investigations Addition of χe^{LR} and χe^{SR} Interactions to χN Using Frozen Core Approximation Considered Two scenarios χN & χe Processes:: Single χ (Γ¹χ tot) or Two Different χ (Γ²χ tot) Combined fits [χN & χe] Provides Stronger significance to DL AM data **☑** Compatible with Presence of Additional Physical Effects All DL AM Allowed Parameter Spaces:: ΣχΝ & χε Channels under both Γ¹χ tot Ruled out @ 90% CL by Combined null AM results **☑** Beyond xN Alone #### **Acknowledgments** This work is supported by Contracts No. 106-2923-M-001-006-MY5, No. 110-2112-M-001-029-MY3, and No. 113-2112-M-001-053-MY3 from the National Science and Technology Council (NSTC), Taiwan, Grant No. 2021-22/TG2.1 from the National Center of Theoretical Sciences, Taiwan All Members of the TEXONO & TDMC Collaborations Dr. Hau-Bin Li Dr. Mukesh Kumar Pandey Dr. Shuvadeep Karmakar **Prof. Henry Tsz-King Wong** # Thank You! 谢谢