Dark Matter Annual Modulation Analysis with Combined Nuclear & Electron Recoil Channels

Hau-Bin Li¹, M.K. Pandey^{1,2}, Manoj Kumar Singh¹, S. Karmakar¹, H.T. Wong¹

[On behalf of the TEXONO Collaboration]

¹Institute of Physics, Academia Sinica

²Department of Physics, Centre for Theoretical Physics, Leung Center for Cosmology and Particle Astrophysics, National Taiwan University

Dark matter annual modulation analysis with combined nuclear and electron recoil channels

H. B. Li@, ^{1,*} M. K. Pandey®, ^{2,†} C. H. Leung, ¹ L. Singh, ^{3,1} H. T. Wong®, ^{1,‡} H.-C. Chi, ⁴ M. Deniz, ^{5,1} Greeshma C., ^{1,3} J.-W. Chen, ² H. C. Hsu, ¹ S. Karadağ, ^{1,6} S. Karmakar, ^{1,7} V. Kumar, ^{1,7} J. Li, ⁸ F. K. Lin, ¹ S. T. Lin, ^{9,1} C.-P. Liu, ⁴ S. K. Liu, ⁹ H. Ma, ⁸ D. K. Mishra, ^{3,1} K. Saraswat, ¹ V. Sharma, ^{10,1} M. K. Singh®, ^{1,11,§} M. K. Singh, ^{7,1} V. Singh, ^{3,11,1} D. Tanabe, ¹ J. S. Wang, ¹ C.-P. Wu, ^{2,4} L. T. Yang, ⁸ C. H. Yeh, ¹ and Q. Yue⁸

(TEXONO Collaboration)

Overview

- ☐ Introduction and Motivation
- □Input Data
- **□**Expected Spectra
- **□**Cross Section
- **□**Analysis
- □ Results and Interpretations
- **□**Summary and Conclusions

Introduction & Motivation

- Compelling Experimental Evidence (Cosmological Observations) ☐ One-quarter of Energy density of Universe == Composed of Dark Matter ☐ Exact Nature & Properties remain Unknown **Decades of Experimental Efforts** ■ Non-luminous & Non-baryonic ☐ Inferred Only from Gravitational Effects Only Result:: Consistent with Positive WIMP Signatures is from AM analysis on xN from DAMA/LIBRA (DL) [NaI(TI)] Search Efforts **►►► Challenged & Rejected::** Numerous Experiments + Variety of **□**Numerous Directions **Targets □**Diverse Techniques Attempts to Explain:: Scenarios other than xN detection [e.g. ☐ Intense areas of Fundamental Research complications in Analysis procedures] □ Favored Candidate | ■ WIMPs (χ) **Present Study::** Analysis including both χe & χN interactions Three Interactions:: SI χN^{SI}, Long & Short-range χe^{LR} & χe^{SR} Direct Experimental Search \square Assume Finite Interactions:: WIMPs with Electrons (χ_{α}) & Nuclei (χ_{α})
 - **☑** Positive Signatures::
 - **Excess Events** over known BKG [Measured Time-Integrated (TI) Energy Spectra] Sensitive to Uncertainties of BKG Modeling
 - Annual Modulation (AM) [Changes of Relative velocity between Earth & WIMPs in Galactic Halo]
 Only requires stable BKG with time & Independent of other details

Input

1. Published AM Amplitudes Data!

- ☐ [NaI(TI)]:: [DL, ANAIS, COSINE], [Xe] XMASS, [Ge] CDEX
- ☐ Complementary in Strength:: Probe Different Parameter Space

2. Expected <u>Differential Spectra</u> $[\chi N^{SI}]$

- Origin:: Differences in χ-velocity relative to Earth
- ☐ Maximum (minimum) Amplitudes :: June 1 (December 2)
- ☐ Feature :: Drop from Enhancement to Deficit at LE
- \square Turning Point $\longrightarrow m_{\gamma}$ -dependent

Input

4. Cross-Section

- I. Rapidly Rising Spectra
- II. Only Data < 4 keVee Contribute to Analysis
- **Σ** χε^{LR} Interactions has Additional 1/q² term
- I. Rise More Steeper @ Low Recoil Energy
- II. Favor experiments with Lower Detection Threshold
- \square Very Different Response at LE from χN^{SI}

- [Talk: Prof. Cheng-Pang Liu → ID 359 !]
- **The Detection Channel** $\chi + A \rightarrow \chi + e^- + A^+$
- Frozen Core Approximation (FCA) PRD 102,123025 (2020) I. Experience on Ge & Xe Extend same approach to Na & I
 - II. Consistency Within ~ 5% [Across Energy Range of 1-30 keVee]
 - **III.** Identical Results [Whether Targets treated as **Atoms** or **Ions**]
 - **IV. Indicates::** Reliable Modeling to Interactions of χ with Atoms

Analysis

Best-fit Estimate Cross Sections @ Given m_{y}

$$\chi^2 = \sum_{i} \frac{1}{\Delta_i^2} \{ n_i - [\sigma_{\chi N}^{SI} \phi_{\chi N}^{SI}(T_i) + \sigma_{\chi e}^{LR} \phi_{\chi e}^{LR}(T_i) + \sigma_{\chi e}^{SR} \phi_{\chi e}^{SR}(T_i) + 2\sqrt{\sigma_{\chi e}^{LR} \sigma_{\chi e}^{SR}} \phi_{\chi e}^{int}(T_i)] \}^2$$

 $n_i & \Delta_i$ [AM Amplitudes & Uncertainties], ϕ [Normalized Spectral Functions]

DL Data::

- I. Positive AM Signatures & Reject Null Hypothesis [@ Large Significance]
- II. Best-fit Spectra only with χN -channel $[\Gamma_N^0: \sigma^{LR}] = \sigma^{SR}] = 0$
- III. Analysis Expands :: All Three Channels as free fitting variables

Two DM Scenarios::

- 1. Parametrized by f_{γ} as DM Relic Density Fraction from χ interacting via χe
- 2. $\Gamma^{1\chi}_{tot} \rightarrow \text{Both } \chi \text{N \& } \chi \text{e Interactions are due to a single } \chi (f_{\chi} = 1)$ [Same constraints on m_{χ} apply to All Channels]
- 3. $\Gamma^{2\chi}_{tot}$ \Rightarrow Case of Independent constraints [Two different χ with fractional density f_{χ} & $(1-f_{\chi})$ interact separately via χe & χN]
- 4. Limiting Case $(f_{\gamma} = 0) \rightarrow$ Corresponds to Baseline Γ^0_N

Analysis

- Combined <u>best-fit</u> in $\Gamma^{1\chi}_{tot}$ == Spectra for $\Gamma^{2\chi}_{tot}$ Shifted m_{ν} from 54 GeV in Γ^{0}_{ν} to 83 GeV in Γ^{1}_{ν}
- Addition of xe-Channels Better Description data < 4 keVee
- <u>Interpretation</u> of DL data incorporating $\Gamma^{(1\chi,2\chi)}$...:
- I. Statistical Significance higher than Γ^0_N alone
- II. LE data (1-4 keVee) gives p-values of 0.52 for $\Gamma^{(1\chi,2\chi)}$ but only 0.07 for Γ^0_N
- III. Differences in $\chi^2/d.o.f.$ between Γ^0_N & $\Gamma^{(1\chi,2\chi)}_{tot}$ p-values of 0.02 & 0.008
- IV. For Complete 1-20 keV dataset :: $\chi^2/\text{d.o.f.}$ in $\Gamma^{(1\chi,2\chi)}$

Implies Additional physical processes ($\chi e^{LR} \& \chi e^{SR}$) to Explain AM spectrum

- Suggests a Scenario Published uncertainties are overestimated
- V. TEST Case :: Uncertainties of DL data Uniformly reduced by 20%
- Resulting in p-value = 0.5
- Γ Tension against Γ^0_N as a Valid Hypothesis is Stronger
- $\Gamma^{(1\chi,2\chi)}$ shows a Perfect Agreement with Data

aplita			
AM Amplitu	Best-Fit $m_{\chi} = 83 \text{ GeV}$		
~ 333 <u>- 1</u> 0	2 4 6	8 10 12 14 T (keV _{ee})	16 18
	Γ^0_{N} :: χN^{SI}	$\Gamma^{(1\chi,2\chi)}_{tot} :: \chi \mathbf{N}^{\mathrm{SI}} + \chi \mathbf{e}^{\mathrm{LR}} + \chi \mathbf{e}^{\mathrm{SR}}$	Compare
Data		χ²/d.o.f.	Δχ²/d.o.f.

₹ -0.01	2 4 6	8 10 12 14 T (keV _{ee})	16 18 2
	Γ^0_{N} :: χN^{SI}	$\Gamma^{(1\chi,2\chi)}_{tot} :: \chi \mathbf{N}^{SI} + \chi \mathbf{e}^{LR} + \chi \mathbf{e}^{SR}$	Compare
Data (keVee)	χ²/d.o.f. (p-value)		Δχ²/d.o.f. (p-value)
	Pi	ublished Data	

	$\chi_{\mathbf{N}^{\mathrm{SI}}}$	$ \begin{array}{c} \Gamma^{(1\chi,2\chi)} & :: \\ \chi N^{SI} + \chi e^{LR} + \chi e^{SR} \end{array} $	Compare
Data (keVee)	(Δχ²/d.o.f. (p-value)	
	Pı	ıblished Data	
1-20	32.06/36	22.40/34	9.66/2

		· ee-	
	Γ^0_{N} :: χN^{SI}	$\Gamma^{(1\chi,2\chi)}_{tot}::$ $\chi N^{SI} + \chi e^{LR} + \chi e^{SR}$	Compare
Data (keVee)	χ²/d.o.f. (p-value)		Δχ²/d.o.f. (p-value)
	Pı	ublished Data	
1-20	32.06/36 (0.66)	22.40/34 (0.94)	9.66/2 (0.008)

\ ee'				
	Γ^0_{N} :: χN^{SI}	$\Gamma^{(1\chi,2\chi)}_{tot} :: \chi \mathbf{N}^{SI} + \chi \mathbf{e}^{LR} + \chi \mathbf{e}^{SR}$	Compare	
Data (keVee)	χ²/d.o.f. (p-value)		Δχ²/d.o.f. (p-value)	
	Pi	ublished Data		
1-20	32.06/36 (0.66)	22.40/34 (0.94)	9.66/2 (0.008)	
1-4	8.6/4	1.3/2	7.26/2	

	Γ^0_{N} :: χN^{SI}	$\Gamma^{(1\chi,2\chi)}_{tot} :: \chi N^{SI} + \chi e^{LR} + \chi e^{SR}$	Compare	
Data	χ²/d.o.f.		Δχ²/d.o.f.	
(keVee)	(p-value)		(p-value)	
Published Data				
1-20	32.06/36	22.40/34	9.66/2	
	(0.66)	(0.94)	(0.008)	
1-4	8.6/4	1.3/2	7.26/2	
	(0.07)	(0.52)	(0.02)	

Test Case (Effects or reduced uncertainties)*

33.33/34

(0.50)*

1.94/2

(0.38)

48.1/36

(0.086)

12.8/4

(0.012)

1-20

1-4

14.8/2

(0.0006)

10.86/2_ (0.0044)

Analysis

- No AM Signatures Observed:: COSINE, ANAIS, XMASS, CDEX
 - **☑** Data consistent with Null Hypothesis
- Predicted Spectra for Null AM Experiments
 - Solution Due to $\Gamma^{(1\chi,2\chi)}_{tot}$ best-fit values of (χN^{SI}, χe^{LR}, χe^{SR}) derived from DL AM data
 - Shows:: Incompatibility of DL best-fit values with Null AM Experiments

Results & Interpretations:: Case of $\Gamma^{1\chi}_{tot}$

Two Allowed Regions in Γ⁰_N::

 @ Low & High m_χ
 Na & I-recoils

 With χe^{LR} & χe^{SR} Added in Γ^{1χ}_{tot}::

 Only high m_χ Region [I-recoils]
 Allowed
 @ Same Significance

 Best-fit Solution of m_χ::

 Shifted from 54 GeV in Γ⁰_N to 83 GeV in Γ^{1χ}_{tot}

Results & Interpretations:: Case of $\Gamma^{1\chi}_{tot}$

- Two Allowed Regions in Γ^0_N ::
 - @ Low & High m, Na & I-recoils
- With χe^{LR} & χe^{SR} Added in $\Gamma^{1\chi}_{tot}$::
- Only high m_{χ} Region [I-recoils] \Longrightarrow Allowed
 - @ Same Significance
- Best-fit Solution of m_{χ} ::

Shifted from 54 GeV in $\Gamma^0_{\ N}$ to 83 GeV in $\Gamma^{1\chi}_{\ tot}$

 m_{γ} (GeV)

Results & Interpretations:: Case of $\Gamma^{1\chi}_{to}$

Shifted from 54 GeV in Γ^{0}_{N} to 83 GeV in $\Gamma^{1\chi}_{tot}$

- Limiting Case of Best-fit value::

 (a) σ^{LR}_{χe} = 0 || Light Red Circle [Allowed Region]
- ▲ Interdependent Allowed Regions::
- I. Low Cross Section Portion of $[\sigma^{LR}_{\chi e}, \sigma^{SR}_{\chi e}]$ Allowed Regions remains Unprobed
- II. Correlation Allowed Space::

Correlated with High Cross Section Region of its Counterparts Rejected by Null AM Experiments

Results & Interpretations:: Case of $\Gamma^{1\chi}_{tot}$

Results & Interpretations:: Case of $\Gamma^{2\chi}$

 $\Gamma_{tot}^{2\chi}$: $m_{\gamma} = 1 \pm 0.1 \text{ GeV}$

Summary and Conclusions

"First analysis":: Explores How χe AM can Play a Role in DL AM

Present Study:: Expand Investigations
 Addition of χe^{LR} and χe^{SR} Interactions to χN
 Using Frozen Core Approximation
 Considered Two scenarios
 χN & χe Processes:: Single χ (Γ¹χ tot) or Two Different χ (Γ²χ tot)
 Combined fits [χN & χe] Provides
 Stronger significance to DL AM data

☑ Compatible with Presence of Additional Physical Effects

All DL AM Allowed Parameter Spaces::

ΣχΝ & χε Channels under both Γ¹χ tot

Ruled out @ 90% CL by Combined null AM results

☑ Beyond xN Alone

Acknowledgments

This work is supported by Contracts No. 106-2923-M-001-006-MY5, No. 110-2112-M-001-029-MY3, and No. 113-2112-M-001-053-MY3 from the National Science and Technology Council (NSTC), Taiwan, Grant No. 2021-22/TG2.1 from the National Center of Theoretical Sciences, Taiwan

All Members of the TEXONO & TDMC Collaborations

Dr. Hau-Bin Li

Dr. Mukesh Kumar Pandey

Dr. Shuvadeep Karmakar

Prof. Henry Tsz-King Wong

Thank You! 谢谢