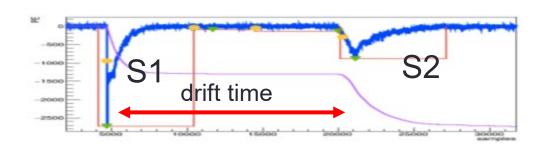
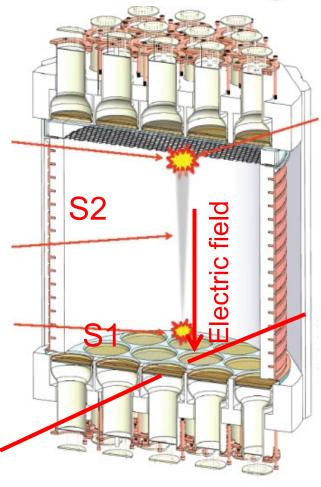


CHARACTERIZATION OF ARGON RECOILS AT THE KEV SCALE WITH RED AND RED+

L. Pandola (LNS)

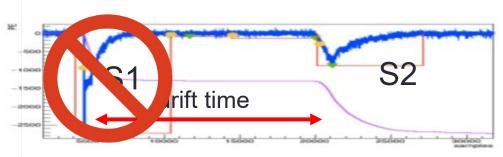
on behalf of the ReD Working Group (GADM Collaboration)

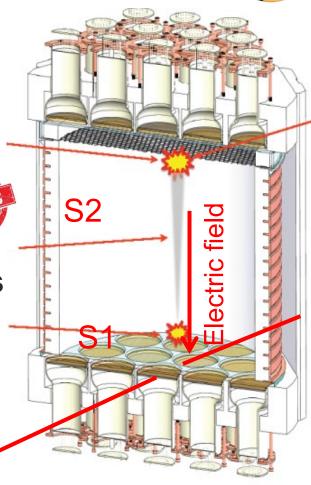

TAUP2025, Xichang, China August 28th, 2025



Physics background

- DarkSide program at Gran Sasso Laboratory, WIMPs search using dualphase Time Projection Chamber with lowradioactivity LAr
 - Operated a 50 kg TPC (DS-50)
 - In preparation: 50 ton TPC (DS-20k)
 - Novel light readout with SiPM
 - Pave way for next-generation (ARGO)

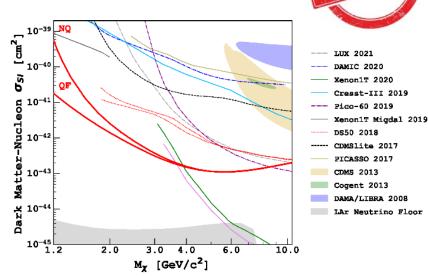




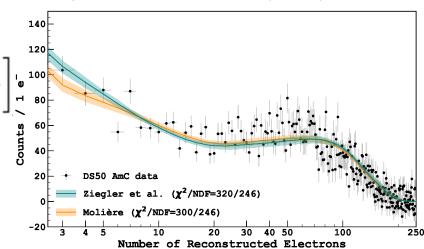
Physics background

 DarkSide program at Gran Sasso Laboratory, WIMPs search using dualphase Time Projection Chamber with lowradioactivity LAr

- Operated a 50 kg TPC (DS-50)
- In preparation: **50 ton TPC** (DS-20k)
 - Novel light readout with SiPM
- Pave way for next-generation (ARGO)
- Technology sensitive to low-mass WIMPs
 - A few GeV instead of the "standard" 100's GeV
 - Slower recoil, O(1 keV) instead of 20-100 keV
 - Challenging! S1 too small, S2-only



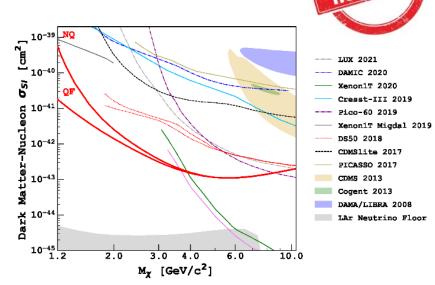
Talks by W. Bonivento, M. Wada & A. Jamil


The search for low-energy WIMPs

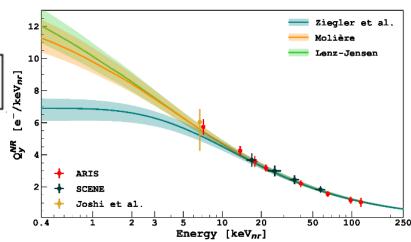
- Analysis sensitive to ionization yield for keV NRs
 - Poorly known for Ar (data at ~7 keV)
- Measurement within DS-50, with AmC and AmBe neutron sources
 - Combined fit with direct measurements (ARIS, SCENE)
 - Constrains from small low-energy sample from the AmC calibration
 - Custom 2-parameter model based on Thomas-Imel box

$$f_q(E_{nr}) = \frac{F}{E_{nr} C_{\text{box}}} \ln \left[1 + \frac{C_{\text{box}}}{F} \cdot \beta \cdot \frac{\epsilon(E_{nr}) s_e(\epsilon)}{s_e(\epsilon) + s_n(\epsilon)} \right]$$

Agnes et al. PRD **107** (2023) 063001 Agnes et al. PRD **104** (2021) 082005

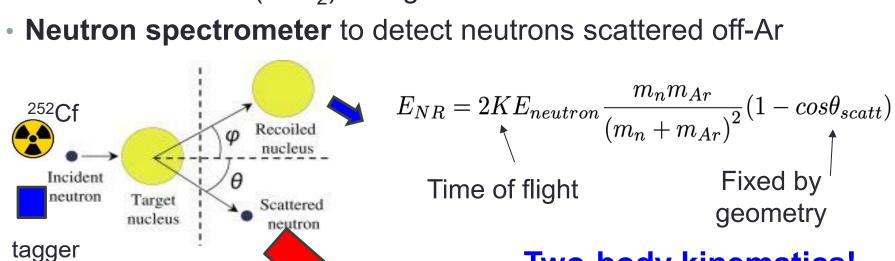

The search for low-energy WIMPs

- Analysis sensitive to ionization yield for keV NRs
 - Poorly known for Ar (data at ~7 keV)
- Measurement within DS-50, with AmC and AmBe neutron sources
 - Combined fit with direct measurements (ARIS, SCENE)
 - Constrains from small low-energy sample from the AmC calibration
 - Custom 2-parameter model based on Thomas-Imel box


$$f_q(E_{nr}) = \frac{F}{E_{nr} C_{\text{box}}} \ln \left[1 + \frac{C_{\text{box}}}{F} \cdot \beta \cdot \frac{\epsilon(E_{nr}) s_e(\epsilon)}{s_e(\epsilon) + s_n(\epsilon)} \right]$$

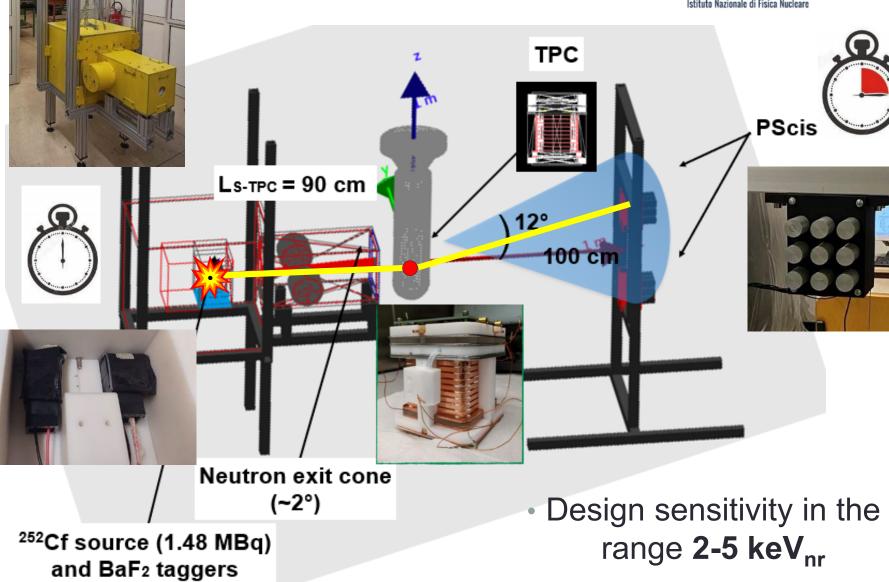
- Different screening models for s_n
- Strong case for a LAr direct measurement at 1-5 keV

Agnes et al. PRD **107** (2023) 063001 Agnes et al. PRD **104** (2021) 082005


 $N(E) \propto exp[-0.88E(MeV)]sinh[2.0E(MeV)]^{1/2}$

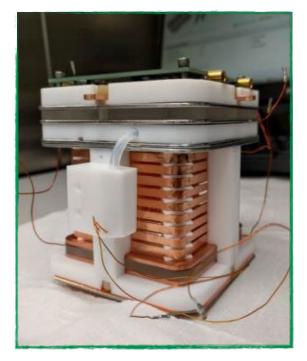
The ReD project

- Measurement within the ReD project
 - Activity within DarkSide
 - Operates a small dual-phase LAr TPC with SiPM readout
- Strategy: Produce Ar recoils of known energy in the TPC by (n,n')
- Neutrons from a ²⁵²Cf fission source
 - Neutrons O(2 MeV) and up to 10 MeV
 - Appropriate to produce recoils of a few keV

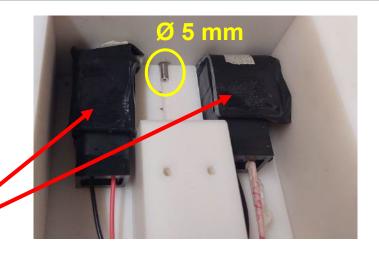

Detector

 $RE_{coil}D_{irectionality}$

Two-body kinematics!


The ReD conceptual layout

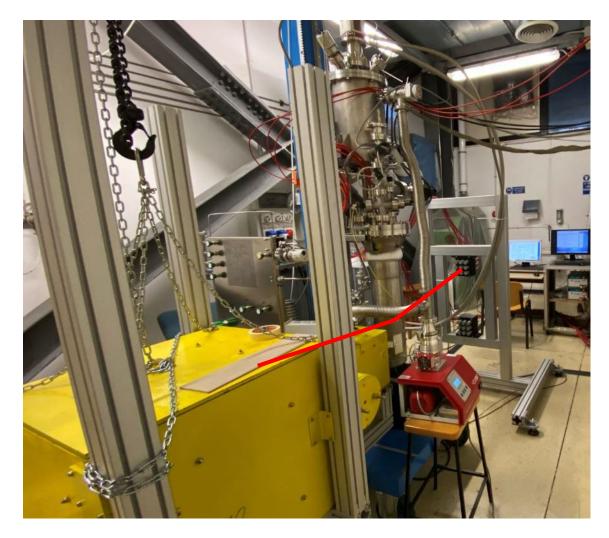
The TPC ...


- Miniaturized version of the DS-20k TPC
 - Active volume: 5(L) x 5 (W) x 6 (H) cm
 - Gas pocket: 7 mm thick
 - TPB coating for wavelength shifting
- DS-20k light readout: 5x5 cm² SiPM, 24x1cm² SiPM
 - 24 ch readout (top), for increased (x,y) resolution
 - 24x1cm² SiPM, 4 ch readout (bottom)
- Front End from the DS-20k R&D
- 3D event reconstruction:
 - (x,y) from S2 pattern on the top SiPMs
 - z from drift time (up to ~54 μs)
- In this campaign:
 - $g_2 = \sim 19 \text{ PE/e-} (E_{drift} = 200 \text{ V/cm}, E_{el} = 5.79 \text{ kV/cm})$
 - Electron lifetime > 1 ms

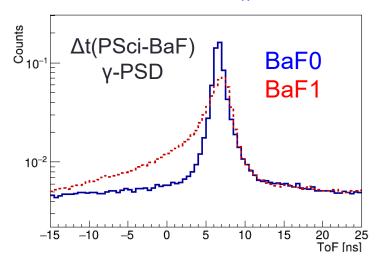
... and all the rest

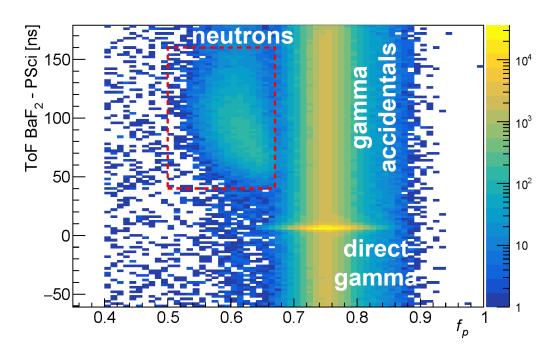
- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle ~2.6°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight

... and all the rest

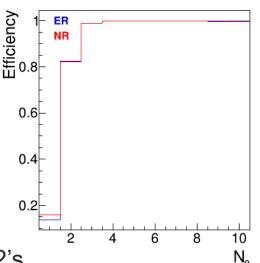

- ²⁵²Cf source (26 kBq fission)
 - Collimator of opening angle ~2.6°
 - Shines the entire TPC at 1 m distance
- Two BaF₂ detectors to tag fission products
 - Fast (high source rate, pile-up)
 - START for time of flight
- Neutron spectrometer: two 3x3 arrays of EJ276 plastic scintillators («PSci»)
 - STOP for time of flight
 - Features n/γ discrimination
 - 1 m downstream the TPC
 - Symmetric deployment
 - θ ~ 12°-17° in order to avoid direct neutrons from the source
- Tag Ar recoils down to ~1-2 keV_{nr}

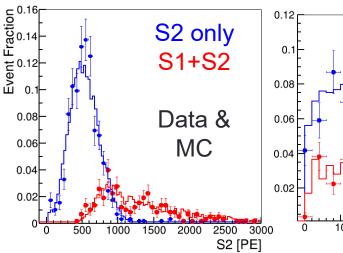
The real thing at

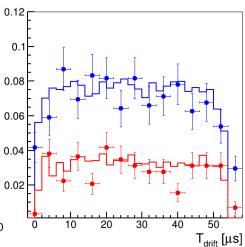




Data taking: finding neutrons...

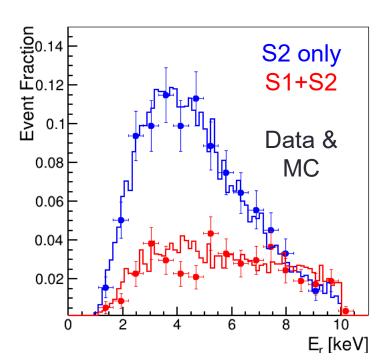

- Data taking with ²⁵²Cf from Jan to Mar, 2023 (about 75 days)
 - Weekly calibrations with ²⁴¹Am and laser
- Trigger logic: "any BaF" ∧ "any PSci"
 - Tagging ~60% of SF events
 - TPC acquired in follower mode (may fail to trigger in S1)
 - Event rate dominated by γ-rays and accidentals
- Selection of candidate neutrons by time of flight and PSD
 - About 0.4% of total triggers
- ToF resolution 0.6-1.3 ns rms
 - Event-by-event E_n at <5%




... interacting in the TPC

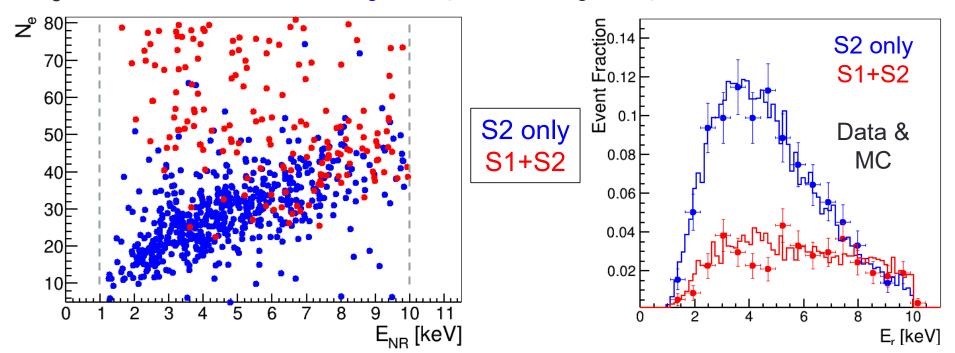
- Look for TPC events offline
 - Pulse finder fully efficient for S1 > 25 PE, S2 > 4 e-
 - Additional selection cuts based on topology:
 - One S2 within 65 μs from BaF₂
 - Optionally, an S1 (< 100 PE) w/ consistent BaF-TPC tof
 - (x,y) in the central 4x4 cm region, no tails of previous S2's

- Detailed end-to-end MC simulation available
 - Produce synthetic data -> same analysis flow than real data
 - Validated on calibration, use to check reconstruction algorithms!
- Final sample: 806 passing all cuts, out of 2258 candidate neutron events w/ TPC signal
 - 71% are S2-only (~ as in MC)
 - From MC, most S1+S2 are expected to be multiple neutron scattering (→ no kinematic correlation)

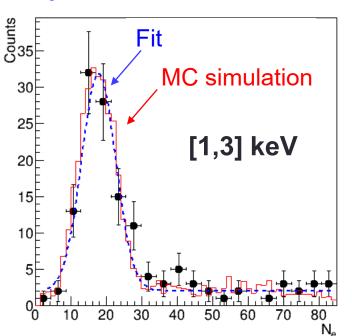

S2 only

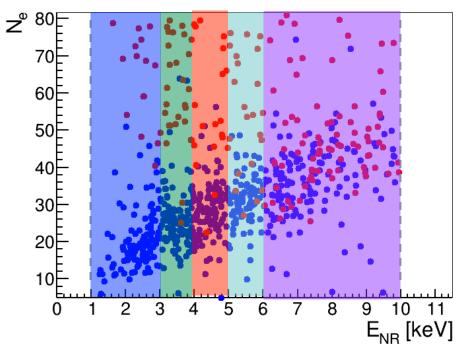
S1+S2

The sample of low-energy recoils


- Get E_{NR} from time of flight (and geometry) down to 1-2 keV
 - Select 1-10 keV due to kinematics
 - Uncertainty 9% @ 2 keV (6% @8 keV), driven by PSci solid angle

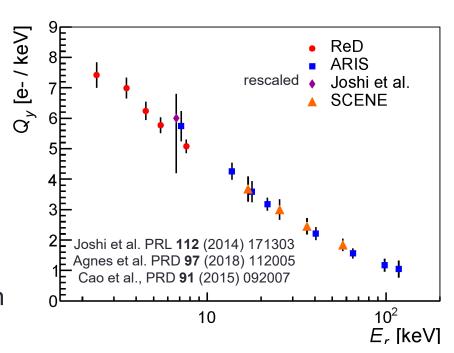
$$E_{NR} = 2KE_{neutron} \frac{m_n m_{Ar}}{(m_n + m_{Ar})^2} (1 - \cos\theta_{scatt})$$

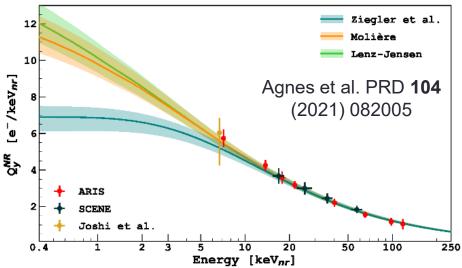

The sample of low-energy recoils


- Get E_{NR} from time of flight (and geometry) down to 1-2 keV
 - Select 1-10 keV due to kinematics
 - Uncertainty 9% @ 2 keV (6% @8 keV), driven by PSci solid angle
- S2 converted into N_e via ionization gain g_2 = (18.6 ± 0.7) PE/e-
 - From ²⁴¹Am calibration, checked with «echo» events
 - ²⁴¹Am to constrain TPC vertical alignment $\Delta z = (0.23 \pm 0.95)$ cm
- N_e resolution 12% at N_e =10 (7% for N_e >40)

Statistical analysis

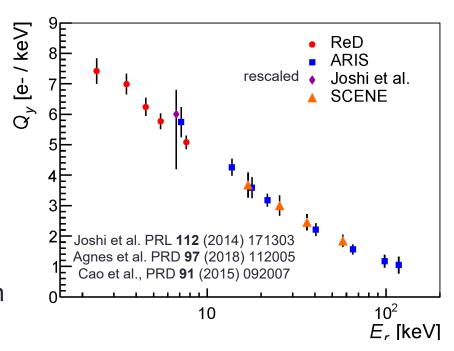
- Slice data in 5 E_{NR} intervals
- For each slice, unbinned maximum likelihood fit
 - gaussian + constant
 - Constant term accounts for multiscattering background
 - N_e: mean value of the gaussian

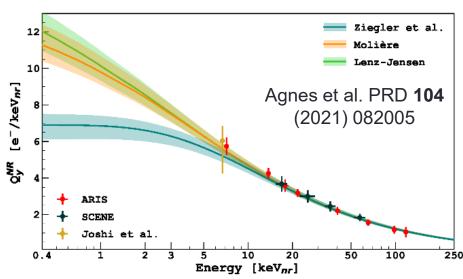




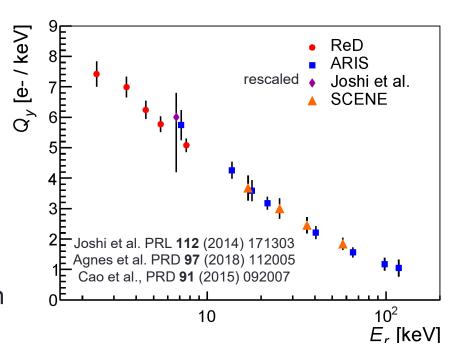
- $\cdot Q_y = N_e / < E_{NR} >$
- Procedure validated with the MCgenerated data sets
 - Unbiased, provided S1+S2 events kept
 - MC nicely describes N_e distribution → potential sensitivity to fluctuations
- Total Q_y uncertainty 4.5% 6%
 - Mostly systematic, driven by Δg_2

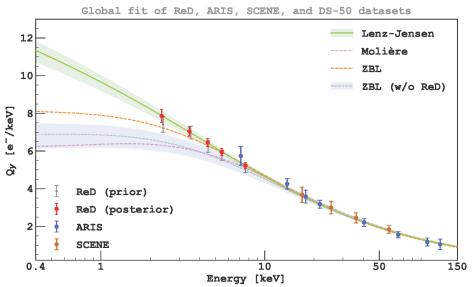
Results and more...


- ReD in agreement with existing data above 7 keV
- Trend of increasing Qy at lower energy
 - Compatible with Lenz-Jensen, but not with Ziegler
 - Problem with Moliere parametrization from literature > miscopied parameters in the Sigmund book

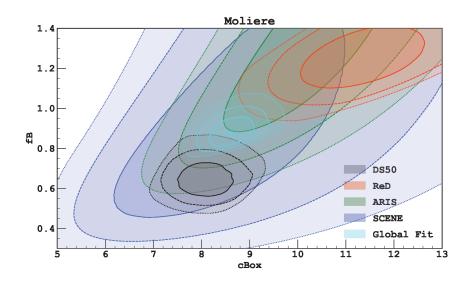


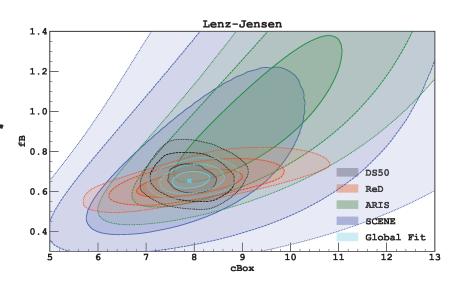
Results and more...

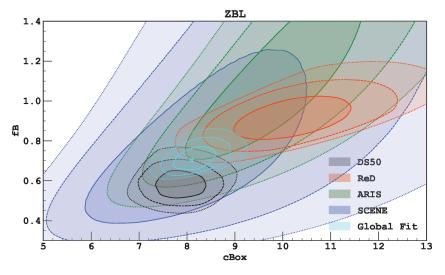

- ReD in agreement with existing data above 7 keV
- Trend of increasing Qy at lower energy
 - Compatible with Lenz-Jensen, but not with Ziegler
 - Problem with Moliere parametrization from literature > miscopied parameters in the Sigmund book
- Repeat the global fit with DS-50, ARIS and SCENE, w/ the ReD data points
 - Ziegler, Lenz-Jensen and (correct)
 Moliere screening functions
- Bonus: marginalization on g₂ and Δz for ReD data
 - Q_y uncertainty 3.0% 4.5%



Results and more...

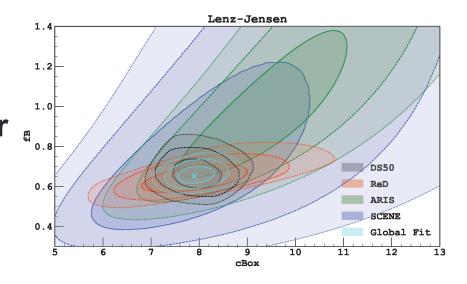

- ReD in agreement with existing data above 7 keV
- Trend of increasing Qy at lower energy
 - Compatible with Lenz-Jensen, but not with Ziegler
 - Problem with Moliere parametrization from literature > miscopied parameters in the Sigmund book
- Repeat the global fit with DS-50, ARIS and SCENE, w/ the ReD data points
 - Ziegler, Lenz-Jensen and (correct)
 Moliere screening functions
- Bonus: marginalization on g₂ and Δz for ReD data
 - Q_y uncertainty 3.0% 4.5%
- Lenz-Jensen looks best

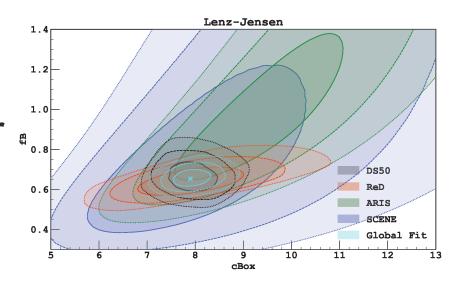


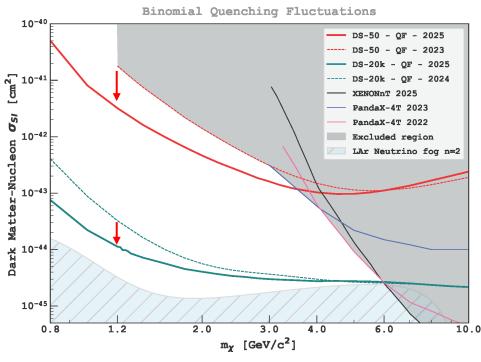


Results & impact

- Quantitative comparison of models by using Bayes Factor
 - L-J vs. Ziegler log_{10} BF = 3.8
 - L-J vs. Moliere log_{10} BF = 7.2



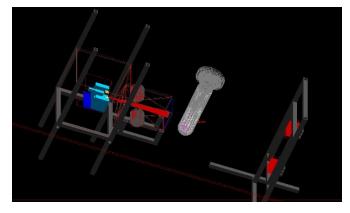

Results & impact


- Quantitative comparison of models by using Bayes Factor
 - L-J vs. Ziegler log_{10} BF = 3.8
 - L-J vs. Moliere log_{10} BF = 7.2
- Good agreement of nuisance parameters with priors
 - $g_2 = (18.8 \pm 0.4) PE/e$ -
 - $\Delta z = (-0.58^{+0.05}_{-0.14}) \text{ cm}$

Results & impact

- Quantitative comparison of models by using Bayes Factor
 - L-J vs. Ziegler log_{10} BF = 3.8
 - L-J vs. Moliere log_{10} BF = 7.2
- Good agreement of nuisance parameters with priors
 - $g_2 = (18.8 \pm 0.4) PE/e$ -
 - $\Delta z = (-0.58^{+0.05}_{-0.14}) \text{ cm}$
- Re-calculate DS-50 limit and DS-20k sensitivity by using Lenz-Jensen (w/ updated parameters)
 - Higher Q_y than the previous
 Ziegler-based calculation →
 stronger bounds

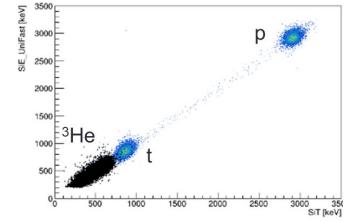
ReD+

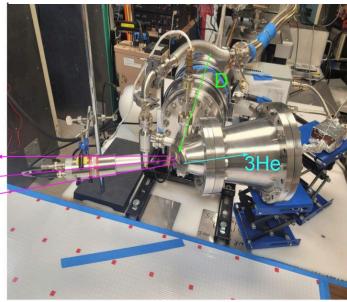




- Future project ReD+, funded as a PRIN project at INFN, Laboratori Nazionali del Sud
- Goal: improve down to 0.5 keV_{nr} (and study fluctuations) with the same approach and optimized components
 - Redesigned TPC, larger spectrometer
 - Use the lesson learnt from ReD
 - Pilot run in winter 2025

ReD+




Future project ReD+, funded as a PRIN project at INFN, Laboratori

Nazionali del Sud

 Goal: improve down to 0.5 keV_{nr} (and study fluctuations) with the same approach and optimized components

- Redesigned TPC, larger spectrometer
- Use the lesson learnt from ReD
- Pilot run in winter 2025
- After that, aim at 0.2 keV_{nr} by using
 2.4-MeV mono-energetic neutrons from a commercial DD generator (10⁷ n/s)
 - Joint project with University of Sao Paulo (PFAPESP grant)
 - Being commissioned now at USP
 - Neutron tagging capability (by detecting ³He)

Conclusions & perspectives

- ReD measured the ionization yield of Ar down to 1-2 keV_{nr} using a miniaturized LAr dual-phase TPC @INFN Catania
 - Two-body kinematics approach: tagged ²⁵²Cf fission source + neutron spectrometer to detect neutrons scattered off the TPC
 - First direct measurement below 6.7 keV_{nr}
 - Data being used to constrain fluctuation models

- Global fit to constrain screening functions
 - Strong preference for Lenz-Jensen over Ziegler and Moliere
 - Update of DarkSide-50 low-mass limits and DarkSide-20k sensitivity
 - Higher Q_v with respect to the previously-assumed Ziegler
- <u>Future</u>: **ReD+** @ **LNS**, to cover down to **0.2 keV**_{nr} with ²⁵²Cf (Italian PRIN funding) and DD neutron generator (Brasilian FAPESP grant)
 - Start data talking in late 2025

Information crucial for "low-mass WIMP" analysis