TAUP 2025 19TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS # THÉ DARKSIDE-20K EXPERIMENT AT LNGS STATUS AND GOALS Walter M. Bonivento – INFN Cagliari On behalf of the DarkSide-20k Collaboration XICHANG, SICHUAN, CHINA #### WIMP DIRECT DETECTION High mass (above 10 GeV) searches sensitivity currently dominated by liquid xenon TPCs A large liquid argon experiment is needed in case of discovery to confirm/disconfirm it, but also in general to validate this very important search with a different target. Different backgrounds rejection techniques The low mass region is very promising for double-phase liquid argon experiments, and it leads to the world's best sensitivities ## ARGON AND TIME PROJECTION CHAMBER (TPC) #### Why Argon? High scintillation and ionization yield, transparency to its scintillation light, dense, can be purified to a high degree Powerful discrimination against electron recoil background via pulse shape studies Two de-excitation times: Singlet ~7 ns Triplet ~1500 ns Nuclear recoil (NR): ~2/3 probability to populate singlet state Electron recoil (ER): ~2/3 probability to populate the triplet state Neutrons and α induce NRs while β and γ induce ERs **WIMPs induce NRs** **51:** primary scintillation in LAr (energy information, pulse shape discrimination and position reconstruction) **S2:** secondary scintillation from electroluminescence of electrons in gaseous Ar (energy information and position reconstruction) #### DARKSIDE-50 2013-2021 @LNGS Still, world-leading WIMP search result in the mass range 1 to 4 $\,$ GeV/ c^2 Eur.Phys.J.C 83 (2023) 322, Phys.Rev.D 107 (2023) 6, Updated result is going to be presented by M. Wada on Wednesday and L. Pandola on Thursday ### DARKSIDE 20K Installation has started. Data taking planned to start in 2028 Located in HALL C @ LNGS 3.6 m Dual-phase TPC 50 t of UAr (20 t fiducial) Two optical planes covering **21** m² with **cryogenic SiPMs** Acrylic TPC with reflectors in the inner and outer walls; field shaping rings by Clevios coating. Anode and cathode of transparent pure acrylic covered with Clevios and TPB (wavelength shifter) Wire grid #### **Neutron Veto:** 32 t of UAr Equipped with SiPMs covering 5m² 40 cm space between the stainless-steel vessel and PMMA. #### **Outer Cosmic Veto:** 700 t of Atmospheric Argon (AAr) Membrane "ProtoDUNE-like" 8x8x8 m³ Cryostat passive insulation SiPM arrays near cryostat walls ### MEMBRANE CRYOSTAT Installation completed in HALL C #### CRYOGENICS IN HALL C JINST 20 (2025) 02, P02016 Installation of AAr cryogenics UAr cryogenics tested with mock-up (see later) and shortly moved into the final position with some new components ### TPC PART PRODUCTION Acrylic panel production Wire grid test facility TAUP 2025 #### LIGHT READOUT: LARGE SIPM ARRAYS (INFIN 528 PDUs in the TPC >10% assembled so far Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), and produced by LFoundry in Italy Photon detection efficiency (PDE) ~45% Low dark-count rate $< 0.01 \text{ Hz/mm}^2 \text{ at } 77 \text{K } (7 \text{VoV})$ $SNR > 8 \text{ for } 10 \times 10 \text{ cm}^2$ All 1400 wafers tested ~94% yield 4 Tiles are summed up together in a single DAQ channel 120 PDUs in the neutron veto (all vTile produced and tested, selection for vPDU ongoing) 30 PDUs in the outer veto #### DS-20K PDU PRODUCTION AND TEST PDU Production: TPC PDUs at NOA@LNGS, vPDUs at Birmingham, STFC interconnect, Manchester and Liverpool Eur.Phys.J.C 85 (2025) 5, 5 e-Print: 2507.07226 PDU packaging and assembly in NOA, an ISO-6 clean room at LNGS ### MOCKUP #### Acrylic structure Demonstrated capability to align barrel within 100 μm HV tests, gas pocket formation exercises Test runs of UAr cryogenics, cooling technique Run at LNGS See the talk by Ako Jamil on Thursday ### PROTO-0 DarkSide-20k's TPC prototype 7 kg argon in the TPC Run at Naples #### WHYUAR ³⁹Ar: Q=565keV and $T_{1/2}$ =269y; β emitter with specific activity \sim 1 Bq/Kg Produced in the atmosphere primarily by neutron-induced reactions of cosmic rays on ⁴⁰Ar . Very low production, if not zero, going underground (UAr) With AAr, Darkside-20k would have 100% dead time (not so DEAP3600, which is single phase) Already used in DS50 → world-leading Wimp low-mass search (1400x suppression of ³⁹Ar) ## THE UAR ROUTE DArT **DS-20k** Aria UAR **Urania** ### URANIA: A NEW HIGH-PRODUCTION PLANT Plant is almost completed: some commissioning of components starting now. Uar production at 230kg/day Transportation: 15 t skids with liquid argon Passive insulation ### ARIA #### 28 central modules ### ARIA Eur.Phys.J.C 83 (2023) 5, 453 Demonstrated isotopic distillation of argon with a 30 m prototype Seruci-0 ### DART IN ARDM At LSC Spain. Sensitivity O(0.1 mBq/kg) All the parts tested and functioning Ready to fill ArDM #### DART IN ARDM With a prototype, we measured the energy spectra of atmospheric argon and UAr from the DarkSide-50 production batch (1kg argon) Measurement of ³⁹Ar activity soon to be made public (we project 30 mBq/kg uncertainty) #### DARKSIDE-20K VETO STRATEGY Neutrons are moderated in the acrylic shell and then captured mainly by hydrogen or argon. The capture process yields **y-rays** γ-rays interact in **argon** of either the **Neutron Veto** or **TPC** A potential improvement under study: at least 20 Gd-PMMA bricks, which are currently in production, embedded in the optical planes #### EXPECTED BACKGROUNDS #### nuclear recoil events after cuts in 200 t-yr: 0.2 ev. in ROI (30-200 keV_{nr}) in the **FID** volume (see next slide) #### CEVENS dominates by an order of magnitude #### electron recoil events in the TPC O(35Hz) from material radioactivity and O(35Hz) from ³⁹Ar (if UAr has the same radioactivity of DS50, TBD) In the VETO O(100Hz) from material radioactivity and O(25Hz) from ³⁹Ar | Background source | Mitigation strategy | | | |---|--|--|--| | ³⁹ Ar β decay | Use underground Ar + Pulse shape discrimination (PSD) | | | | γ from rock and γ,e from materials | PSD Selection of materials & procedures | | | | Radiogenic neutron (a,n) reaction in detector materials | Material screening & selection, MC study Definition of Fiducial volume in the TPC Veto to reject neutron signals | | | | Surface contamination due to Rn progeny | Surface cleaning
Reduce the number of surfaces
Installation of Rn abated system | | | | Muon induced background | Cosmogenic veto | | | | Neutrino coherent scattering | Irreducible (~1.6 events in ROI in a 100 t-yr) | | | \rightarrow dead time of O(10%) #### HIGH MASS WIMP SENSITIVITY DS-20K Both signals, **S1** (scintillation) and **S2** (ionization), are used. The best G3 sensitivity **Publication in preparation** FID: low instrumental background rate: dominated by CEVENS EXT: full argon volume inside the TPC is used, background dominated by radiogenic neutrons from photo-sensors and the experimental hall #### LOW MASS WIMP SENSITIVITY DS-20K Commun. Phys. 7 (2024) 1, 422 Using S2 (ionization signal) only. **Detailed background** study, information from DarkSide-50 data. Sensitivity update is going to be presented by M. Wada on Wednesday and L.Pandola on Thursday based on... NB: 1 year sensitivity!!!!! #### NEW CHARGE YIELD MEASUREMENT IN LAR Using S2 (ionization signal) only. New charge yield measurement with the ReD experiment in Catania with ²⁵²Cf source, extending the measurement down to 2keVnr, detailed presentation by M. Wada on Wednesday and L.Pandola on Thursday #### SUPERNOVA NEUTRINOS Detection in the whole Milky Way with CEvENS using \$2 (ionization signal) only. JCAP 03 (2021) 043 ### BACKUP ### TPC INSTALLATION PLANS Inside the cryostat, equipped as Rn free clean room False floor already installed #### THE UAR EXTRACTION SITE DOE canyon, Dolores County, Colorado the Kinder-Morgan (KM) company, for petroleum purposes, extracts gas from the subsoil, with composition: CO2 95%, UAr 430ppm; DarkSide "takes" the argon and returns the rest to KM The gas comes from the mantle ("magmatic CO2"); the concentration of uranium and thorium in the mantle is typically at the level of ppb, 1/1000 compared to the crust (Well depth 3 KM) —>low probability of production of 39Ar | Composition | # of atoms (neutrons) yr ⁻¹ kg ⁻¹ | | | | | |--------------------------|---|----------|------------------|------------------|--| | | ⁴ He | neutrons | ²¹ Ne | ³⁹ Ar | | | Upper Continental Crust | 1.64×10^{10} | 10,680 | 753 | 28.7 | | | Middle Continental Crust | 8.98×10^{9} | 6114 | 416 | 13.9 | | | Lower Continental Crust | 1.53×10^{9} | 1129 | 70.2 | 0.749 | | | Bulk Continental Crust | 9.43×10^{9} | 6253 | 433 | 15.3 | | | Bulk Oceanic Crust | 3.79×10^{8} | 260 | 15.8 | 0.0235 | | | Depleted Upper Mantle | 2.51×10^7 | 22.4 | 1.06 | 0.000257 | | TAUP 2025 33