

TAUP 2025

19TH INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS

THÉ DARKSIDE-20K EXPERIMENT AT LNGS STATUS AND GOALS

Walter M. Bonivento – INFN Cagliari
On behalf of the
DarkSide-20k Collaboration

XICHANG, SICHUAN, CHINA

WIMP DIRECT DETECTION

High mass (above 10 GeV) searches sensitivity currently dominated by liquid xenon TPCs

A large liquid argon experiment is needed in case of discovery to confirm/disconfirm it, but also in general to validate this very important search with a different target.

Different backgrounds rejection techniques

The low mass region is very promising for double-phase liquid argon experiments, and it leads to the world's best sensitivities

ARGON AND TIME PROJECTION CHAMBER (TPC)

Why Argon?

High scintillation and ionization yield, transparency to its scintillation light, dense, can be purified to a high degree Powerful discrimination against electron recoil background via pulse shape studies

Two de-excitation times:
Singlet ~7 ns Triplet ~1500 ns

Nuclear recoil (NR): ~2/3 probability to populate singlet state

Electron recoil (ER): ~2/3 probability to populate the triplet state

Neutrons and α induce NRs while β and γ induce ERs

WIMPs induce NRs

51: primary scintillation in LAr (energy information, pulse shape discrimination and position reconstruction)

S2: secondary scintillation from electroluminescence of electrons in gaseous Ar (energy information and position reconstruction)

DARKSIDE-50

2013-2021 @LNGS

Still, world-leading WIMP search result in the mass range 1 to 4 $\,$ GeV/ c^2

Eur.Phys.J.C 83 (2023) 322, Phys.Rev.D 107 (2023) 6,

Updated result is going to be presented by M. Wada on Wednesday and L. Pandola on Thursday

DARKSIDE 20K

Installation has started. Data taking planned to start in 2028 Located in HALL C @ LNGS

3.6 m

Dual-phase TPC

50 t of UAr (20 t fiducial)

Two optical planes covering **21** m² with **cryogenic SiPMs**

Acrylic TPC with reflectors in the inner and outer walls; field shaping rings by Clevios coating.

Anode and cathode of transparent pure acrylic covered with Clevios and TPB (wavelength shifter)

Wire grid

Neutron Veto:

32 t of UAr
Equipped with
SiPMs covering 5m²
40 cm space
between the
stainless-steel
vessel and PMMA.

Outer Cosmic Veto:

700 t of Atmospheric Argon (AAr)
Membrane "ProtoDUNE-like" 8x8x8 m³
Cryostat passive insulation
SiPM arrays near cryostat walls

MEMBRANE CRYOSTAT

Installation completed in HALL C

CRYOGENICS IN HALL C

JINST 20 (2025) 02, P02016

Installation of AAr cryogenics

UAr cryogenics tested with mock-up (see later) and shortly moved into the final position with some new components

TPC PART PRODUCTION

Acrylic panel production

Wire grid test facility

TAUP 2025

LIGHT READOUT: LARGE SIPM ARRAYS (INFIN

528 PDUs in the TPC

>10% assembled so far

Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), and produced by LFoundry in Italy

Photon detection efficiency (PDE) ~45% Low dark-count rate $< 0.01 \text{ Hz/mm}^2 \text{ at } 77 \text{K } (7 \text{VoV})$

 $SNR > 8 \text{ for } 10 \times 10 \text{ cm}^2$

All 1400 wafers tested ~94% yield

4 Tiles are summed up together in a single DAQ channel 120 PDUs in the neutron veto (all vTile produced and

tested, selection for vPDU ongoing)

30 PDUs in the outer veto

DS-20K PDU PRODUCTION AND

TEST

PDU Production: TPC PDUs at NOA@LNGS, vPDUs at Birmingham, STFC interconnect, Manchester and Liverpool

Eur.Phys.J.C 85 (2025) 5, 5 e-Print: 2507.07226

PDU packaging and assembly in NOA, an ISO-6 clean room at LNGS

MOCKUP

Acrylic structure

Demonstrated capability to align barrel within 100 μm

HV tests, gas pocket formation exercises

Test runs of UAr cryogenics, cooling technique

Run at LNGS

See the talk by Ako Jamil on Thursday

PROTO-0

DarkSide-20k's TPC prototype

7 kg argon in the TPC

Run at Naples

WHYUAR

³⁹Ar: Q=565keV and $T_{1/2}$ =269y;

 β emitter with specific activity \sim 1 Bq/Kg

Produced in the atmosphere primarily by neutron-induced reactions of cosmic rays on ⁴⁰Ar . Very low production, if not zero, going underground (UAr)

With AAr, Darkside-20k would have 100% dead time (not so DEAP3600, which is single phase)

Already used in DS50 → world-leading Wimp low-mass search (1400x suppression of ³⁹Ar)

THE UAR ROUTE DArT **DS-20k** Aria UAR **Urania**

URANIA: A NEW HIGH-PRODUCTION PLANT

Plant is almost completed: some commissioning of components starting now. Uar production at 230kg/day

Transportation:

15 t skids with liquid argon

Passive insulation

ARIA

28 central modules

ARIA

Eur.Phys.J.C 83 (2023) 5, 453

Demonstrated isotopic distillation of argon with a 30 m prototype Seruci-0

DART IN ARDM

At LSC Spain. Sensitivity O(0.1 mBq/kg)

All the parts tested and functioning

Ready to fill ArDM

DART IN ARDM

With a prototype, we measured the energy spectra of atmospheric argon and UAr from the DarkSide-50 production batch (1kg argon)

Measurement of ³⁹Ar activity soon to be made public (we project 30 mBq/kg uncertainty)

DARKSIDE-20K VETO STRATEGY

Neutrons are moderated in the acrylic shell and then captured mainly by hydrogen or argon.

The capture process yields **y-rays**

γ-rays interact in **argon** of either the **Neutron Veto** or **TPC**

A potential improvement under study: at least 20 Gd-PMMA bricks, which are currently in production, embedded in the optical planes

EXPECTED BACKGROUNDS

nuclear recoil events

after cuts in 200 t-yr: 0.2 ev. in ROI (30-200 keV_{nr}) in the **FID** volume (see next slide)

CEVENS dominates by an order of magnitude

electron recoil events

in the TPC O(35Hz) from material radioactivity and O(35Hz) from ³⁹Ar (if UAr has the same radioactivity of DS50, TBD)

In the VETO O(100Hz) from material radioactivity and O(25Hz) from ³⁹Ar

Background source	Mitigation strategy		
³⁹ Ar β decay	Use underground Ar + Pulse shape discrimination (PSD)		
γ from rock and γ,e from materials	PSD Selection of materials & procedures		
Radiogenic neutron (a,n) reaction in detector materials	Material screening & selection, MC study Definition of Fiducial volume in the TPC Veto to reject neutron signals		
Surface contamination due to Rn progeny	Surface cleaning Reduce the number of surfaces Installation of Rn abated system		
Muon induced background	Cosmogenic veto		
Neutrino coherent scattering	Irreducible (~1.6 events in ROI in a 100 t-yr)		

 \rightarrow dead time of O(10%)

HIGH MASS WIMP SENSITIVITY DS-20K

Both signals, **S1** (scintillation) and **S2** (ionization), are used.

The best G3 sensitivity

Publication in preparation

FID: low instrumental background rate: dominated by CEVENS

EXT: full argon volume inside the TPC is used, background dominated by radiogenic neutrons from photo-sensors and the experimental hall

LOW MASS WIMP SENSITIVITY DS-20K

Commun. Phys. 7 (2024) 1, 422

Using S2 (ionization signal) only.

Detailed background study, information from DarkSide-50 data.

Sensitivity update is going to be presented by M. Wada on Wednesday and L.Pandola on Thursday based on...

NB: 1 year sensitivity!!!!!

NEW CHARGE YIELD MEASUREMENT IN LAR

Using S2 (ionization signal) only.

New charge yield measurement with the ReD experiment in Catania with ²⁵²Cf source, extending the measurement down to 2keVnr, detailed presentation by M. Wada on Wednesday and L.Pandola on Thursday

SUPERNOVA NEUTRINOS

Detection in the whole Milky Way with CEvENS using \$2 (ionization signal) only.

JCAP 03 (2021) 043

BACKUP

TPC INSTALLATION PLANS

Inside the cryostat, equipped as Rn free clean room

False floor already installed

THE UAR EXTRACTION SITE

DOE canyon, Dolores County, Colorado

the Kinder-Morgan (KM) company, for petroleum purposes, extracts gas from the subsoil, with composition: CO2 95%, UAr 430ppm; DarkSide "takes" the argon and returns the rest to KM

The gas comes from the mantle ("magmatic CO2"); the concentration of uranium and thorium in the mantle is typically at the level of ppb, 1/1000 compared to the crust (Well depth 3 KM) —>low probability of production of 39Ar

Composition	# of atoms (neutrons) yr ⁻¹ kg ⁻¹				
	⁴ He	neutrons	²¹ Ne	³⁹ Ar	
Upper Continental Crust	1.64×10^{10}	10,680	753	28.7	
Middle Continental Crust	8.98×10^{9}	6114	416	13.9	
Lower Continental Crust	1.53×10^{9}	1129	70.2	0.749	
Bulk Continental Crust	9.43×10^{9}	6253	433	15.3	
Bulk Oceanic Crust	3.79×10^{8}	260	15.8	0.0235	
Depleted Upper Mantle	2.51×10^7	22.4	1.06	0.000257	

TAUP 2025

33