

Topics in Astroparticle and Underground Physics (TAUP2025)

Xichang, Sichuan Province, China

The detector

DEAP-3600 is set at SNOLAB (Sudbury, Canada), 2 km underground

ArXiv: 2007.15925

WIMP search in LAr

Discriminated against w/ pulse shape discrimination

Fully modeled EM background

$$I_{LAr}(t) = \frac{R_s}{\tau_s} e^{-t/\tau_s} + \frac{1 - R_s - R_t}{\tau_{rec}(1 + t/\tau_{rec})^2} + \frac{R_t}{\tau_t} e^{-t/\tau_t} \qquad \tau_s = 8.2ns \qquad \tau_{rec} = 175.5ns \qquad R_s = 0.23$$

$$\tau_{rec} = 175.5ns \qquad R_t = 0.71$$

Eur. Phys. J. C 80,303 (2020)

Singlet state

Triplet state

$$\tau_s = 8.2ns$$

$$\tau_t = 1445ns$$

$$\tau_{rec} = 175.5ns$$
 $R_s = 0.23$

$$R_t = 0.71$$

 $I_{LAr}(t) = \frac{R_s}{\tau_s} e^{-t/\tau_s} + \frac{1 - R_s - R_t}{\tau_{rec}(1 + t/\tau_{rec})^2} + \frac{R_t}{\tau_t} e^{-t/\tau_t}$ $= \frac{R_s - R_t}{\tau_t} \left(1 + \frac{R_t}{\tau_t} e^{-t/\tau_t}\right)$ $= \frac{r_{s} = 8.2ns}{\tau_{rec} = 175.5ns}$ $= \frac{R_s = 0.23}{R_t = 0.71}$

Eur. Phys. J. C 80,303 (2020)

Measurements on the ³⁹Ar: the specific activity...

$$S_{^{39}Ar} = (0.964 \pm 0.001(stat) \pm 0.024(syst))Bq/kg_{Ar}$$

$$S_{^{39}Ar} = \frac{N_{single} + N_{pile-up}}{m_{LAr}T_{livetime}}$$

Analysis performed on $T_{livetime} = 167 \text{ days}$

Measurement	Specific activity [Bq/kg _{atmAr}]
WARP [13] ArDM [14] DEAP-3600 (this work)	1.01 ± 0.08 0.95 ± 0.05 0.964 ± 0.024

Eur. Phys. J. C (2023) 83,642

First direct measurement of the ³⁹Ar half-life **2.5σ tension** with Nuclear Data Sheets (NDS)

Alpha quenching in LAr

Three data points for the alpha Quenching Factor (QF) in the range (5.489 - 7.686) MeV

Measurements relative to 210 Po QF from Doke et al = 0.710 ± 0.028 (@ 5.305MeV)

Extrapolation of the QF values into the low-energy region down to 10 keV

Position reconstruction

2025 JINST 20 P07012

Comparison of three algorithms,

- Likelihood based on PMT hit pattern (MBL)
- Likelihood based on photon time of flight (TF2)
- Neural Network (newest algorithm) for multiple positions within the vessel, vs time stability, for events in the LAr and in the neck

Searches at MeV-scale energy deposits

Ultra-heavy DM candidates: extremely low number density in the halo, need for tonne-scale exposure and pretty high cross-section, hence multi-scattering in LAr!

Main backgrounds from 39 Ar + (n, γ) pile-ups

Exclusion limits set for two composite DM models

Searches at MeV-scale energy deposits

Ongoing: First search for solar neutrino absorption in ⁴⁰Ar

R. S. Raghavan (1986): superallowed $0+ \rightarrow 0+$ Fermi transition from the ground state of 40 Ar to an excited state of 40 K.

M. Bhattacharya et al. : measured Gamow-Teller (GT) strengths for transitions from ⁴⁰Ar to ⁴⁰K*

$$\boldsymbol{\nu}_{\rm e}$$
 + ⁴⁰ Ar \rightarrow ⁴⁰ K* + e⁻

Hardware upgrades: neck alphas

- External cooling system to prevent argon condensation
- Installation of pyrene coated flowguides to help alpha rejection through PSD

Nucl.Instrum.Meth.A 1034 (2022)

Hardware upgrades: dust alphas

18000

Photoelectrons detected

20000

22000

---- 20-25 μm

---- 30-35 μm

----- 40-45 μm

— Sum MC Model

---- 15-20 μm

---- 35-40 μm

----- 45-50 μm

Hz / (800 PE)

25-30 μm

α-decays from trace amount of dust particulate contamination within liquid argon.

tp Argon storage tank

November 2025: dust removal with installed customdeveloped pipe

Filter and P-trap

16

Upcoming: updated WIMP limit

- Perfored on the full second-fill dataset
- Based on a Profile-Likelihood Ratio method
- Modeling the main alpha-induced backgounds within the experiment

Stay tuned!

Third-fill!

- 14 April 2025: cooling down started!
- 26 June 2025: first drops of LAr

Main objectives: test the effectiveness of the hardware upgrades

Third Fill Data (2025-07-27) - approx. 2600kg LAr in detector

Take-home

- DEAP-3600: largest running LAr experiment designed for the WIMP search
- World-leading sensitivity to WIMPs in LAr, as well as neutrino adsorption and ultra-heavy, multi-scattering DM
- Main backgrounds within the WIMP ROI: dust-alphas and neck-alpha induced events, now included in the PLR WIMP search (coming soon)
- Hardware upgrades to strongly reduce the alpha-induced backgrounds in the WIMP ROIs
- Third-fill just started, new results on the way!

Nuclear recoils Electron recoils (DM, neutrons) (e, gammas)

Nuclear recoils Electron recoils (DM, neutrons) (e, gammas)

Most precise measurement of atmospheric ³⁹Ar specific activity up to date

$$S_{^{39}Ar} = \frac{N_{single} + N_{pile-up}}{m_{LAr}T_{livetime}}$$

Updated measurement for the liquid argon target

First

$$m_{LAr} = (3269 \pm 96)kg$$
 $m_{LAr} = (3269 \pm 24)kg$

This work!

Contribution from pile up from double and triple ³⁹Ar, other electron recoil + ³⁹Ar, Cherenkov + ³⁹Ar

$$N_{pile-up} = N_{double} + N_{triple} + N_{ERB,39Ar} + N_{hFp,39Ar}$$

Analysis performed on $T_{livetime} = 167 \text{ days}$

Fit performed with both Bayesian and Frequentist approaches

Digital Trigger module prescaling = 100

$$N_{single} = \frac{n_{fit,single} \cdot a_{preso}}{\epsilon_{fit,single}} b$$

$$N_{double} = \frac{n_{fit,double} \cdot a_{presc}}{\epsilon_{fit,double} \cdot b}$$

Selection cuts efficiencies

Fit bin width = 20

$$S_{^{39}Ar} = \frac{N_{single} + N_{pile-up}}{m_{LAr}T_{livetime}}$$

$$S_{^{39}Ar} = (0.964 \pm 0.001(stat) \pm 0.024(syst))Bq/kg_{Ar}$$

Measurement	Specific activity [Bq/kg _{atmAr}]
WARP [13] ArDM [14] DEAP-3600 (this work)	1.01 ± 0.08 0.95 ± 0.05 0.964 ± 0.024

Relative Measurement and Extrapolation of the Scintillation Quenching Factor of α -Particles in Liquid Argon using DEAP-3600 Data

Three data points for the alpha Quenching Factor (QF) in the range (5.489 - 7.686) MeV

$${}^{222}_{86}\text{Rn} \xrightarrow{\alpha} {}^{218}_{84}\text{Po} \xrightarrow{\alpha} {}^{214}_{82}\text{Pb} \xrightarrow{\beta} {}^{214}_{83}\text{Bi} \xrightarrow{\beta} {}^{214}_{84}\text{Po} \xrightarrow{\alpha} {}^{210}_{82}\text{Pb}$$

QF for 210 Po from Doke et al = 0.710 ± 0.028 (5.305MeV)

$$\frac{\rm QF_{\alpha,^{218}Po}}{\rm QF_{\alpha,^{222}Rn}} = \frac{\rm PE_{\alpha,^{218}Po}}{\rm PE_{\alpha,^{222}Rn}} \times \frac{E_{\alpha,^{222}Rn}}{E_{\alpha,^{218}Po}} \equiv R_2 \times \frac{E_{\alpha,1}}{E_{\alpha,2}},$$

$$\frac{\mathrm{QF}_{\alpha,^{214}\mathrm{Po}}}{\mathrm{QF}_{\alpha,^{222}\mathrm{Rn}}} = \frac{\mathrm{PE}_{\alpha,^{214}\mathrm{Po}}}{\mathrm{PE}_{\alpha,^{222}\mathrm{Rn}}} \times \frac{E_{\alpha,^{222}\mathrm{Rn}}}{E_{\alpha,^{214}\mathrm{Po}}} \equiv R_3 \times \frac{E_{\alpha,1}}{E_{\alpha,3}}.$$

$$QF_{\alpha} = \frac{PE_{\alpha}}{Y \times E_{\alpha, dep}}$$

arXiv: 2406.18597v1

Extrapolation of the QF values into the lowenergy region down to 10 keV

The energy-dependent QF product of the bestfit electronic QF curve and the nuclear QF curve from TRIM

arXiv: 2406.18597v1

Searches at MeV-scale energy deposits

Ultra-heavy DM candidates: extremely low number density in the halo, need for tonne-scale exposure and pretty high cross-section, hence **multi-scattering in LAr!**

Main backgrounds from 39 Ar + (n, γ) pile-ups

World-leading exclusion limits among direct detection experiments at Planck scale masses

Phys. Rev. Lett. 128, 011801 (2022)

