This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480 # SEARCHES for LIGHT DARK MATTER with DarkSide-20k and DarkSide-LowMass ## Masayuki Wada Astrocent, CAMK PAN, Warsaw for the Global Argon Dark Matter Collaboration ## DARKSIDE PROGRAM - Direct detection search for WIMP dark matter - Based on a two-phase argon time projection chamber (TPC) Design philosophy based on having very low background levels that can be further reduced through active suppression, for background-free operation from both neutrons and β/γ 's DarkSide-10 DarkSide-50 See more details in and DarkSide-LowMass for low-mass dark matter searches ## FEATURES OF NOBLE LIQUID DETECTORS - Dense and easy to purify (good scalability, advantage over gaseous and solid target) - High scintillation & ionization (low energy threshold, not low enough to search $< 1 \text{ GeV/c}^2 \text{ DM}$) - Transparent to own scintillation #### For TPC - High electron mobility and low diffusion - Amplification (electroluminescence gain) for ionization signal - Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio #### Liquid Xenon - Denser & Radio pure - Lower energy threshold - Higher sensitivity at low mass WIMP #### Liquid **Argon** - lower temperature (Rn removal is easier) - Stronger ER discrimination via pulse shape - Intrinsic ER BG from 39Ar - Need wavelength shifter ## SENSITIVITY TO HIGH AND LOW MASS WIMPS - Sharp rise at low mass is due to detection threshold. - Need lower threshold lonization signal (S2) Low **Number Density** High - Rise at high mass is due to fixed energy density of WIMPs. - Need large target mass. - Scalability is important! ## LIQUID Ar TPC FOR DARK MATTER SEARCHES ## **High Mass Search High Energy Events** - Scintillation (S1) & Ionization (S2) - Pulse Shape Discrimination (PSD) - Drift time provides vertical event position ## **Low Mass Search Low Energy Events** - Electrofluorescence in gas gap lets us detect single e- with high efficiency. - →Lower energy threshold - No PSD - No vertical position #### WHAT WE ACHIEVED IN DS-50 - ▶ Scintillation signal (S1): threshold at ~2 keV_{ee} / 6 keV_{nr} - ▶ Ionization signal (S2): threshold < 0.1 ke V_{ee} / 0.4 ke V_{nr} Can go lower threshold! - Use Ionization (S2) Only. - ▶ Amplified in the gas region (~23 PE/e⁻ or more) - Sensitive to a single extracted electron! - The electron yield for nuclear recoils increases at low energy #### WIMP spectra in Xe and Ar Ar has lighter mass than Xe. So, more efficient momentum transfer from low mass DM. ## WHAT WE ACHIEVED IN DS-50 #### Phys. Rev. D 107, 063001 ---- DS50 2022 ----- PandaX-4T 2022 ----- LUX 2021 ----- DAMIC 2020 ----- Xenon1T 2020 ----- Pico-60 2019 ----- Pico-60 2019 ----- DS50 2018 ----- CDMSlite 2017 ----- PICASSO 2017 ----- CDMS 2013 ----- CDMS 2013 ----- CDMS 2013 ----- LAT Neutrino Floor The most stringent limit at $M_X = [1.2, 3.6] \text{ GeV/c}^2$ Annual modulation analysis are also published! Phys. Rev. D 110, 102006 (2024) #### SUB-GEV DARK MATTER #### AND OTHER DARK MATTER MODELS - With the same dataset, we search for other dark matter models. - In those candidates, DM signals are also ER. - Ultra-light DM ($m_\chi \ll 1$ GeV) scatter off electrons. - Two extreme cases of Dark Matter form-factor are considered - ► F_{DM}=1 heavy mediator - ▶ F_{DM} $\propto 1/q^2$ light mediator - More for Axion-like particles, Dark photons, and Sterile neutrinos. ## WHAT LIMITS SENSITIVITY? - Internal βs from 85Kr and 39Ar - γ s from photosensors and cryostat Spurious electrons (setting the energy threshold) More details see arXiv:2507.23003 Limited understanding of LAr responses ## DARKSIDE-20K DETECTOR - DarkSide-20k will be installed underground at the Gran Sasso National laboratories, in Italy. - ▶ The detector has a nested structure: - Stainless Steal Vessel contain liquid underground argon (100 t) - Acrylic (PMMA) TPC filled with 50 t of UAr - Neutron veto buffer between TPC and SS vessel - Membrane cryostat like the ProtoDune one ## PHOTO SENSOR - Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), in Italy. - Key features - Photon detection efficiency (PDE) ~45% - ▶ Low dark-count rate < 0.01 Hz/mm² at 77K - Mass production of the raw wafer in LFoundry company and assembly in a dedicated facility at LNGS (NOA). - SiPM with integrated electronics (ASIC) will reduce radioactive components. Single SPADs \sim 25-30 µm² Single SiPM $\sim 1 \text{ cm}^2$ Photo Detector Module (PDM) = matrix of 24 SiPMs, $5 \times 5 \text{ cm}^2$ 4 PDUs are summed and read as a single channel (largest single SiPM unit ever!) ## **UNDERGROUND ARGON** - Urania (Extraction): - Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 330 kg/day of Underground Argon - Aria (Isotope separation): - Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon. A factor 10 reduction of ³⁹Ar per pass is expected with ~10 kg/day. #### **DArT** (assay): A single phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches at Canfranc Laboratory, Spain. ## **EXPECTED LOW MASS DM SENSITIVITY** - Using S2 (ionization signal) only. - Detailed background study, information from DarkSide-50 data. - ▶ Expected BG reduction in 85Kr and photosensors gives DarkSide-20k with a leading role below 5 GeV/c². Also, prediction for other light DM candidates (Axion like particles, dark photons, sterile neutrino, and light dark matters via electron scattering) are studied. #### CRITERIA FOR FUTURE LAR TPC - ▶ Low activity of ³⁹Ar - Low impurity - good electron lifetime - low rate of the single electron events - Ultra-pure photo-sensor - Pure cryostat (or cryostat further away) #### **Advantages** - Possibility to dope with Xe and/or other isotopes to lower detection threshold. - Capability to clean LAr quickly after commissioning to reduce the SE background once primary source of impurities identified. Phys. Rev. D 107, 112006 #### DarkSide-LowMass conceptual design ~6 t of LAr ## WHAT IF WITH HIGHER 39Ar CONCENTRATION? - DarkSide-50 established we can achieve at least 750 μBq. - With one pass of ARIA (~75 μBq), DarkSide-LowMass can search down to neutrino fog at 5 GeV/c² DM mass. - Lowering the threshold is more important to be sensitive to lower DM mass. ## RADIOPURE DETECTOR - Estimated γ-ray backgrounds using currently available technology - SiPMs from DS-20k - Acrylic from DEAP/DS-20k - Radiopure cryostat away from TPC - Additional suppression with γ-ray veto system. ## **SENSITIVITY PREDICTION** #### 90% CL upper limits \blacktriangleright With 1 t yr exposure, ν-fog is reachable! ## **ReD EXPERIMENT** - Low energy nuclear recoil calibration is necessary to model DM signals. - A small TPC with SiPM readout - Directionality study completed - P. Agnes et al, Eur. Phys. J. C 84, 24 (2024) - Dedicated run with ²⁵²Cf neutron source to measure the ionization yield in Ar for nuclear recoils down to 2 keV - Analysis completed and final results to be presented at this conference See more details in <u>Luciano Pandola's talk!!</u> Low energy Nuclear recoil calibration setup ## **SUMMARY** - DarkSide-50 has established the sensitivity of LAr for low mass dark matter. - DarkSide-20k has potential to lead the searches below 5 GeV/c². See more details in Commun Phys 7, 422 (2024). - DarkSide-LowMass has a clear path to the ν-fog with the technologies developed for DarkSide-20k. - \triangleright Significant γ -ray background reduction due to radio pure materials and the veto system. - Room for additional sensitivity gains from: - > ³⁹Ar reduction: Improvements in UAr extraction with the Urania plant and isotopic purification with the Aria cryogenic distillation column, - **Lower energy threshold**: Lower SE backgrounds, better UAr purity, and optimized field design. - Ongoing R&D for spurious electron suppression, low-energy recoil calibration measurements, and further energy threshold reduction. ## Backup ## WHAT CAUSE SPURIOUS ELECTRONS? From correlation with absence of a purification system etc., up to ~50% of SE can be impurity origin. More details see arXiv:2507.23003 - No identified SE events related to grid emission (seen in xenon-based detector). Wire vs plane (ITO) on the cathode and anode make difference? - Electron extraction efficiency is higher in Ar than Xe. FIG. 1. Dependence of the coefficient of electron emission from solid (\blacktriangle , 80 K) and liquid (\bullet —fast component, \circ —fast plus slow components, 90 K) argon, and solid (\vartriangle , 160 K) and liquid (\lnot , 165 K) xenon on the electric field intensity. Solid lines—calculations. ## SENSITIVITY TO SUPERNOVA NEUTRINOS - > Supernovae can provide constraints to the neutrino absolute mass and mass ordering. (One SN every 50 years <30 kpc.) - Water Cherenkov and scintillator detectors (SK, HK, IceCube, KM3NeT, and JUNO) mostly **sensitive** $\bar{\nu_e}$ via inverse beta decay (IBD) and ν_e via elastic scattering ($\nu_e + e^- \rightarrow \nu_e + e^-$). - ▶ DUNE is mostly **sensitive** ν_e via charge current interaction (ν_e + 40 Ar \rightarrow 40 K* + e^-). $\langle E_{ u} angle$ ~10 MeV DS-20k (Argo, future detector) can detect all flavor (anti)neutrinos via coherent elastic neutrino-nucleus scattering (CEvNS). #### Time evolution of neutrino luminosity from SN #### 400₁ [J/s]-All ν 350 300 $\begin{array}{l} \nu_{\mu}\text{+}\nu_{\tau} \\ \overline{\nu}_{u}\text{+}\overline{\nu}_{\tau} \end{array}$ neutronization 250 200 150 cooling accretion 100 50 - 10^{-2} 10^{-1} 10^{-3} 1 10 t[s] #### Significance to 11M_☉ and 27M_☉ Bands represent lower ³⁹Ar up to a factor 10. - Using S2 (ionization signal) only. - Detailed background study, information from DarkSide-50 data. - Ds-20k has potential to discover supernova bursts throughout our galaxy. ## **COSMOGENIC ACTIVATION IN TRANSIT** - Cosmogenic activation in transportation is inevitable. - Detail activation calculations for plausible transportation paths, UAr purification at Aria. | | $^{39}\mathrm{Ar}$ | $^{37}\mathrm{Ar}$ | ³ H | |---|--------------------|--------------------|----------------| | | | $[\mu Bq/kg]$ | | | Urania→Aria
Aria (1 mo., surface)
Aria→LNGS | 14.7 ± 1.3 | 806 ± 73 | 58 ± 12 | | Aria (1 mo., surface) | 2.57 ± 0.33 | 294 ± 39 | 9.0 ± 2.8 | | Aria→LNGS | 0.86 ± 0.11 | 118 ± 15 | 3.00 ± 0.95 | | $Aria \rightarrow N. America$ | 5.73 ± 0.73 | 483 ± 64 | 20.0 ± 6.3 | - ▶ ³⁷Ar: (EC, x-rays+e- ~ 277 or 2829 eV) $t_{1/2} = 35$ days \rightarrow Good calibration, removes itself - ³H: (β-, Qβ = 18.6 keV) t_{1/2} = 12.3 years → Remove w/ chem. purification (ex situ: Aria, in situ: Getter) - ▶ ³⁹Ar: (β-, Qβ = 565 keV) $t_{1/2}$ = 269 years → Sets floor: Hard to go below ~1 μBq/kg. For reference, 100× reduction relative to DS-50 gives 7.3 μBq/kg ## **LOCATIONS** #### **Candidate locations:** - The China Jinping Underground Laboratory (CJPL), China - SNOLAB, Sudbury, Ontario, Canada - Boulby Underground Laboratory, UK - The Gran Sasso National Laboratory (LNGS), Italy - Any other place? Kamioka?