

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

SEARCHES for LIGHT DARK MATTER with DarkSide-20k and DarkSide-LowMass

Masayuki Wada

Astrocent, CAMK PAN, Warsaw for the Global Argon Dark Matter Collaboration

DARKSIDE PROGRAM

- Direct detection search for WIMP dark matter
- Based on a two-phase argon time projection chamber (TPC)

Design philosophy based on having very low background levels that can be further reduced through

active suppression, for background-free operation from

both neutrons and β/γ 's

DarkSide-10

DarkSide-50

See more details in

and DarkSide-LowMass for low-mass dark matter searches

FEATURES OF NOBLE LIQUID DETECTORS

- Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- High scintillation & ionization (low energy threshold, not low enough to search $< 1 \text{ GeV/c}^2 \text{ DM}$)
- Transparent to own scintillation

For TPC

- High electron mobility and low diffusion
- Amplification (electroluminescence gain) for ionization signal
- Discrimination electron/nuclear recoils (ER/NR) via ionization/scintillation ratio

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid **Argon**

- lower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- Intrinsic ER BG from 39Ar
- Need wavelength shifter

SENSITIVITY TO HIGH AND LOW MASS WIMPS

- Sharp rise at low mass is due to detection threshold.
- Need lower threshold lonization signal (S2)

Low

Number Density

High

- Rise at high mass is due to fixed energy density of WIMPs.
- Need large target mass.
- Scalability is important!

LIQUID Ar TPC FOR DARK MATTER SEARCHES

High Mass Search High Energy Events

- Scintillation (S1) & Ionization (S2)
- Pulse Shape Discrimination (PSD)
- Drift time provides vertical event position

Low Mass Search Low Energy Events

- Electrofluorescence in gas gap lets us detect single e- with high efficiency.
 - →Lower energy threshold
- No PSD
- No vertical position

WHAT WE ACHIEVED IN DS-50

- ▶ Scintillation signal (S1): threshold at ~2 keV_{ee} / 6 keV_{nr}
- ▶ Ionization signal (S2): threshold < 0.1 ke V_{ee} / 0.4 ke V_{nr} Can go lower threshold!
- Use Ionization (S2) Only.
 - ▶ Amplified in the gas region (~23 PE/e⁻ or more)
 - Sensitive to a single extracted electron!
 - The electron yield for nuclear recoils increases at low energy

WIMP spectra in Xe and Ar

Ar has lighter mass than Xe. So, more efficient momentum transfer from low mass DM.

WHAT WE ACHIEVED IN DS-50

Phys. Rev. D 107, 063001

---- DS50 2022
----- PandaX-4T 2022
----- LUX 2021
----- DAMIC 2020
----- Xenon1T 2020
----- Pico-60 2019
----- Pico-60 2019
----- DS50 2018
----- CDMSlite 2017
----- PICASSO 2017
----- CDMS 2013
----- CDMS 2013
----- CDMS 2013
----- LAT Neutrino Floor

The most stringent limit at $M_X = [1.2, 3.6] \text{ GeV/c}^2$

Annual modulation analysis are also published!

Phys. Rev. D 110, 102006 (2024)

SUB-GEV DARK MATTER

AND OTHER DARK MATTER MODELS

- With the same dataset, we search for other dark matter models.
- In those candidates, DM signals are also ER.
- Ultra-light DM ($m_\chi \ll 1$ GeV) scatter off electrons.
- Two extreme cases of Dark Matter form-factor are considered
 - ► F_{DM}=1 heavy mediator
 - ▶ F_{DM} $\propto 1/q^2$ light mediator
- More for Axion-like particles, Dark photons, and Sterile neutrinos.

WHAT LIMITS SENSITIVITY?

- Internal βs from 85Kr and 39Ar
- γ s from photosensors and cryostat

 Spurious electrons (setting the energy threshold)

More details see arXiv:2507.23003

Limited understanding of LAr responses

DARKSIDE-20K DETECTOR

- DarkSide-20k will be installed underground at the Gran Sasso National laboratories, in Italy.
- ▶ The detector has a nested structure:
 - Stainless Steal Vessel contain liquid underground argon (100 t)
 - Acrylic (PMMA) TPC filled with 50 t of UAr
 - Neutron veto buffer between TPC and SS vessel
 - Membrane cryostat like the ProtoDune one

PHOTO SENSOR

- Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), in Italy.
- Key features
 - Photon detection efficiency (PDE) ~45%
 - ▶ Low dark-count rate < 0.01 Hz/mm² at 77K
- Mass production of the raw wafer in LFoundry company and assembly in a dedicated facility at LNGS (NOA).
- SiPM with integrated electronics (ASIC) will reduce radioactive components.

Single SPADs

 \sim 25-30 µm²

Single SiPM

 $\sim 1 \text{ cm}^2$

Photo Detector Module (PDM) = matrix of 24 SiPMs, $5 \times 5 \text{ cm}^2$ 4 PDUs are summed and read as a single channel (largest single SiPM unit ever!)

UNDERGROUND ARGON

- Urania (Extraction):
 - Expansion of the argon extraction plant in Cortez, CO, to reach capacity of 330 kg/day of Underground Argon
- Aria (Isotope separation):
 - Very tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon. A factor 10 reduction of ³⁹Ar per pass is expected with ~10 kg/day.

DArT (assay):

A single phase low-background detector to measure the ³⁹Ar depletion factor of different underground argon batches at Canfranc Laboratory, Spain.

EXPECTED LOW MASS DM SENSITIVITY

- Using S2 (ionization signal) only.
- Detailed background study, information from DarkSide-50 data.
- ▶ Expected BG reduction in 85Kr and photosensors gives DarkSide-20k with a leading role below 5 GeV/c².

Also, prediction for other light DM candidates (Axion like particles, dark photons, sterile neutrino, and light dark matters via electron scattering) are studied.

CRITERIA FOR FUTURE LAR TPC

- ▶ Low activity of ³⁹Ar
- Low impurity
 - good electron lifetime
 - low rate of the single electron events
- Ultra-pure photo-sensor
- Pure cryostat (or cryostat further away)

Advantages

- Possibility to dope with Xe and/or other isotopes to lower detection threshold.
- Capability to clean LAr quickly after commissioning to reduce the SE background once primary source of impurities identified.

Phys. Rev. D 107, 112006

DarkSide-LowMass conceptual design

~6 t of LAr

WHAT IF WITH HIGHER 39Ar CONCENTRATION?

- DarkSide-50 established we can achieve at least 750 μBq.
- With one pass of ARIA (~75
 μBq), DarkSide-LowMass
 can search down to
 neutrino fog at 5 GeV/c²
 DM mass.
- Lowering the threshold is more important to be sensitive to lower DM mass.

RADIOPURE DETECTOR

- Estimated γ-ray backgrounds using currently available technology
 - SiPMs from DS-20k
 - Acrylic from DEAP/DS-20k
 - Radiopure cryostat away from TPC
- Additional suppression with γ-ray veto system.

SENSITIVITY PREDICTION

90% CL upper limits

 \blacktriangleright With 1 t yr exposure, ν-fog is reachable!

ReD EXPERIMENT

- Low energy nuclear recoil calibration is necessary to model DM signals.
- A small TPC with SiPM readout
- Directionality study completed
 - P. Agnes et al, Eur. Phys. J. C 84, 24 (2024)
- Dedicated run with ²⁵²Cf neutron source to measure the ionization yield in Ar for nuclear recoils down to 2 keV
- Analysis completed and final results to be presented at this conference

See more details in <u>Luciano Pandola's talk!!</u>

Low energy Nuclear recoil calibration setup

SUMMARY

- DarkSide-50 has established the sensitivity of LAr for low mass dark matter.
- DarkSide-20k has potential to lead the searches below 5 GeV/c². See more details in Commun Phys 7, 422 (2024).
- DarkSide-LowMass has a clear path to the ν-fog with the technologies developed for DarkSide-20k.
- \triangleright Significant γ -ray background reduction due to radio pure materials and the veto system.
- Room for additional sensitivity gains from:
 - > ³⁹Ar reduction: Improvements in UAr extraction with the Urania plant and isotopic purification with the Aria cryogenic distillation column,
 - **Lower energy threshold**: Lower SE backgrounds, better UAr purity, and optimized field design.
- Ongoing R&D for spurious electron suppression, low-energy recoil calibration measurements, and further energy threshold reduction.

Backup

WHAT CAUSE SPURIOUS ELECTRONS?

From correlation with absence of a purification system etc., up to ~50% of SE can be impurity origin.

More details see arXiv:2507.23003

- No identified SE events related to grid emission (seen in xenon-based detector). Wire vs plane (ITO) on the cathode and anode make difference?
- Electron extraction efficiency is higher in Ar than Xe.

FIG. 1. Dependence of the coefficient of electron emission from solid (\blacktriangle , 80 K) and liquid (\bullet —fast component, \circ —fast plus slow components, 90 K) argon, and solid (\vartriangle , 160 K) and liquid (\lnot , 165 K) xenon on the electric field intensity. Solid lines—calculations.

SENSITIVITY TO SUPERNOVA NEUTRINOS

- > Supernovae can provide constraints to the neutrino absolute mass and mass ordering. (One SN every 50 years <30 kpc.)
- Water Cherenkov and scintillator detectors (SK, HK, IceCube, KM3NeT, and JUNO) mostly **sensitive** $\bar{\nu_e}$ via inverse beta decay (IBD) and ν_e via elastic scattering ($\nu_e + e^- \rightarrow \nu_e + e^-$).
- ▶ DUNE is mostly **sensitive** ν_e via charge current interaction (ν_e + 40 Ar \rightarrow 40 K* + e^-).

 $\langle E_{
u}
angle$ ~10 MeV

DS-20k (Argo, future detector) can detect all flavor (anti)neutrinos via coherent elastic neutrino-nucleus scattering (CEvNS).

Time evolution of neutrino luminosity from SN

400₁ [J/s]-All ν 350 300 $\begin{array}{l} \nu_{\mu}\text{+}\nu_{\tau} \\ \overline{\nu}_{u}\text{+}\overline{\nu}_{\tau} \end{array}$ neutronization 250 200 150 cooling accretion 100 50 - 10^{-2} 10^{-1} 10^{-3} 1 10 t[s]

Significance to 11M_☉ and 27M_☉

Bands represent lower ³⁹Ar up to a factor 10.

- Using S2 (ionization signal) only.
- Detailed background study, information from DarkSide-50 data.
- Ds-20k has potential to discover supernova bursts throughout our galaxy.

COSMOGENIC ACTIVATION IN TRANSIT

- Cosmogenic activation in transportation is inevitable.
- Detail activation calculations for plausible transportation paths, UAr purification at Aria.

	$^{39}\mathrm{Ar}$	$^{37}\mathrm{Ar}$	³ H
		$[\mu Bq/kg]$	
Urania→Aria Aria (1 mo., surface) Aria→LNGS	14.7 ± 1.3	806 ± 73	58 ± 12
Aria (1 mo., surface)	2.57 ± 0.33	294 ± 39	9.0 ± 2.8
Aria→LNGS	0.86 ± 0.11	118 ± 15	3.00 ± 0.95
$Aria \rightarrow N. America$	5.73 ± 0.73	483 ± 64	20.0 ± 6.3

- ▶ ³⁷Ar: (EC, x-rays+e- ~ 277 or 2829 eV) $t_{1/2} = 35$ days \rightarrow Good calibration, removes itself
- ³H: (β-, Qβ = 18.6 keV) t_{1/2} = 12.3 years → Remove w/ chem. purification (ex situ: Aria, in situ: Getter)
- ▶ ³⁹Ar: (β-, Qβ = 565 keV) $t_{1/2}$ = 269 years → Sets floor: Hard to go below ~1 μBq/kg. For reference, 100× reduction relative to DS-50 gives 7.3 μBq/kg

LOCATIONS

Candidate locations:

- The China Jinping Underground Laboratory (CJPL), China
- SNOLAB, Sudbury, Ontario, Canada
- Boulby Underground Laboratory, UK
- The Gran Sasso National Laboratory (LNGS), Italy
- Any other place? Kamioka?

