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Cryogenic Underground TEst facility ({ (CUTE)

o Milli-Kelvin cryogenic technology + low
background environment provides new
opportunities
o Dark matter search, neutrinoless double

beta decay search, qguantum sensing and
computing, etc.

e CUTE@SNOLAB provides unique environment
for testing and operating cryogenic devices

 Facility Paper:

https://www.frontiersin.org/articles/10.3389/fphy.2023.1319879/full
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https://www.frontiersin.org/articles/10.3389/fphy.2023.1319879/full
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Cryogenic
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* Pulsed-Tube-based Dilution fridge purchased
from Cryoconcept

* Base temperature: 12 mK with payload
 O(10 L) experimental space
e Can support up to a 20 kg payload

* Cooldown Cycle: 1 week
e 3 day warm-up, 3.5 days cooldown

* Fridge can run with minimum attention for

extended periods
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Underground Advantage

e SNOLAB is located at the active
Vale-Creighton mine

e Just outside Sudbury, Ontario, Canada

e 2km deep

o Entire lab is a class-2000 clean room 2070m (6000m w.e.)
o <2000 particle w/ >0.5um in diameter O3 cosmic muonsidy

per cubic foot

e Low muon flux
o <0.27 u/(m? * day)

e Hosts rare event searches and

low-background measurements '
) J Class-2000 clean room
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Underground Backgrounds
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HDPE shield 220" 272727

o Ambient backgrounds (gammas,
neutrons and alphas) still present in s S 'ﬁ 4 =1— e
SNOLAB 1
o Fridge inside drywellina 3.5 m : g2 :
diameter water tank with 20 cm 1 J————— 1_
polyethylene lid for neutron shielding | outerpbshietd - permalPb
« 10 cm of low-activity lead as 1 Magnetic shield '@ Detectors | -
additional gamma shield t MaMes o P
e 15 cminternal lead “cake” for almost
41T shielding
e Low-radon air into the drywell U T
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Low radon cleanroom for payload installation

« Class 200, with Radon level < 10 Bg/m?
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CUTE Backgrounds

o Materials screened prior to use
in CUTE
o Measured background

6.7 +/- 0.8 events/(keV*kg*day) =

o With a 600 g SuperCDMS
style Ge detector
e <0.5event/(keV*kg*day) for
nuclear recoils (simulation)
o The inner layer lead shielding
(30%), SNOLAB cavern gammas
(20%), OVC (13%)
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Vibration
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103 |
X Cryogenic equipment
Drywell S —— / 1.4 kg Ge detector
] . Rigid support beam
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o Cryogenic devices are highly sensitive to

Frequency [Hz]

vibrations and changing magnetic fields

o Cryostat and pulse tube are decoupled through a suspension system
o Mu-metal shielding reduces the magnetic field by a factor of 50
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TEsting Facility: Calibration

e Ba-133 calibration source (350 keV gamma, 37 kBq)
o Can be deployed along the length of the cryostat

o Internal Fe-55 source (6 keV) is also available for low energy
calibration p—

Calibration system rest-box

o’
Ba-133 source encapsulation &

Constant force retractor

Guiding copper tube

External lead shield
Internal lead shield

Cryostat can
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TEsting Facility: Calibration
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e Cf-252 neutron source, 37.5 kBq
o Stepper motor allows motion
through the water tank

Relative yield
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FACILITY
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CUTE Experimental Program
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Completed: SuperCDMS Tower testing
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Tower Body  Vertical Flex Cable CUTE
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Vacuum Coax (‘ X\ |
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SuperCDMS

Clean room

Copper Housing

2 n o \Cryogcs plant

Radon filter plant
For more information about SuperCDMS, see E. Michielin’s presentation on Tuesday



https://indico-cdex.ep.tsinghua.edu.cn/event/175/contributions/2351/
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Why Tower Testing?

First chance to operate these detectors in deep underground
environment

Noise performance in low background environment
Operation of detectors with high voltage for extended periods
Detector “neutralization” investigations

First campaign for calibrating detectors

i
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Ge Calibration

Ge activation peaks in Tower 3 Detector 3 +/-25V (preliminary data quality cuts)

e 2°2Cf neutron source

910'3
o 7OGe + N — 71(5e 5 No fiducial cut applied
"l
o Electron-capture decay: s —
€ 10+
"Ge+e—""Ga+V, -
o K-shell: 10.3 keV i
o L-shell: 1.3 keV G 10
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Si Calibration

F

« Compton scattering with 1**Ba

o Scattering cross section decreases
below atomic binding energies
(Compton steps)

e 4 days live-time shown here

o (Red “fit” line only to guide the eye)

K-step, 1.8 keV /

Ba calibration for Tower 3 Detector 2 at OV (preliminary data quality cuts)
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Completed: HVeV@CUTE

Gram scale eV resolution

S

Great for
o Detailed detector response studies

e Instrumental background
investigations

e Low-mass DM searches
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Understanding instrumental backgrounds

e Sub 1-eh peaks
e Hypothesized: from
unpolished sidewalls

e Will attempt sidewall ™

etching/polishing

Low energy excess

Evidence hints at different

jonization from ER and NR
o “Heat only”

Unpacking ER/NR/Heat Only
components by operating with

different voltages
Phonon energy = E

recoil eh

1-eh peak

Could be from electrode

leakage, light leakage, etc.
electrode blocking

Attempting

materials for mitigation

Also building better light tight

enclosures

\ Rate / 25/

+n, *e*AV

What are th

/
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Total phonon energy [eV]
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HVeV Run 5

o Payload of six HVeV detectors
e Use LEDs to calibrate

e Primary Goal: Study
backgrounds
o Low Energy Excess (LEE)
o Leakage Rate

o Secondary Goal: DM Search

llllllll
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New Best Resolution for HVeV
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Detector response model fit to LED calibration data

Si detector with SiO2 buffering

Achieved 0.57 eV baseline
resolution!

Sample of the posterior of the resolution from MCMC chain
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Study of Non-ionizing Background

Background Data — NFCSO

1 HV=-35V
EE [ HV=0V
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o Can use comparisons between 0V
and HV data to study heat only

components of the LEE
e Rate in HV data is higher ir%

1eh Peak

/0.25 eV

= N
below leh peak =
P % 2eh Region
o Could be contamination from a =
particular background... | ”
(Next slide) . . 1| B N W | | E—
0 20 40 60 80 100
Energy [eV]

Phonon energy = E +n, *e*AV

recoil eh
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Pesky Background: “Burst Events”

e Observed “bursts” of low energy
events occurring after high energy
events

e Trigger Rate can jump by a factor
up to ~100 during a burst

e Actively working on understanding
then removing these events

1400 {
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[ Raw Spectrum
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Current: QUTEDbits HH=E

o Superconducting qubits exploit quantum
superpositions to carry out complex
guantum algorithms
o Coherence times limited by several P
sources A

i )

o Larger than expected populations of / Vit o)

non-equilibrium quasiparticles o Quas|particles
. yer
observed (Serniak 2018) / ‘ o1

. . . .. . Josephson
° Ionlzmg radiation can contribute to %\M M . :

junction
this population gy e
. ) . Sub
o First data obtained this summer postiale ] %

o Full sets of systematic studies planned next



https://doi.org/10.1103/PhysRevLett.121.157701
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CUTE Facility Upgrades

Facility origina

lly supported “DC”

payloads (such as transition edge sensor

calorimeters)
Upgraded faci
lines with rigic

ity supports up to 12 RF
coax cables

New sample p

ate and magnetic shield

for qubit devices
Can simultaneously run RF and DC

payloads

Possibilities for other RF-based
experiments in the future

IIIIIIII

2025-08-28
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QUTEbits Simulations

o Background simulations using
Geant4

o Rates informed by material
assays

e Sensor response studies using
G4CMP

o First principle charge and
phonon propagation simulation
o NIMA 1055 (2023) 168473

Courtesy of S. Zatschler

2025-08-28
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Future projects: Your ideas wanted!
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e Send proposals via e-mail to cute_proposals@snolab.ca

e Or contact SNOLAB management.



mailto:cute_proposals@snolab.ca
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Conclusion

 CUTE is a SNOLAB user facility

* Provides a cryogenic low-background
vibrationally isolated environment
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e Successfully ran SuperCDMS tower for ~half |
a year

* HVeV investigates instrumental
backgrounds and searches for DM

* Qubit program ongoing
* Open for future experiments
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Backup Slides
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Transmon Qubits
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Phys. Rev. A 76, 042319 (2007) Appl. Phys. Rev. 6, 021318 (2019)
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