

The SABRE North experiment at Gran Sasso Laboratory

Krzysztof Szczepaniec on behalf of Sabre North collaboration

The SABRE collaboration remembers the invaluable contributions of Professor Frank Calaprice, who played a fundamental role in shaping the SABRE experiment.

Frank Calaprice passed away on June 30, 2025.

Dark Matter annual modulation

expected event rate (if we are observing DM)

$$R(t) \approx S_0 + S_m \cos \frac{2\pi}{T} (t - t_0)$$

DAMA/NaI + DAMA/LIBRA

2-6 keV

$$S_m = (0.0102 \pm 0.0008)$$
 [cpd/kg/keV] 13.7 σ

Dark Matter annual modulation

NaI-based detectors aiming to study annual modulation

Experiment	Location	Target	Mass [kg]	Status
DAMA/LIBRA	LNGS	NaI(Tl)	250	stopped
ANAIS-112	LSC	NaI(Tl)	112.5	running
COSINE-100	Y2L	NaI(Tl)	106/61.3	upgrading
COSINE-200	Yemilab	NaI(Tl)	~200	in preparation
SABRE North SABRE South	LNGS SUPL	NaI(Tl)	~50 ~50	in preparation
COSINUS	LNGS	NaI	~1	in preparation
PICOLON	Kamioka	NaI(Tl)	~50	in preparation

SABRE

Sodium-iodide with Active Background RejEction

GOAL: Model independent test of DAMA claim

- -> Use the same material as DAMA
- -> With background level lower than DAMA

- Eliminate non-DM effects

- Use ultra-pure NaI(Tl) crystals

SABRE

Sodium-iodide with Active Background RejEction

GOAL: Model independent test of DAMA claim

- -> Use the same material as DAMA
- -> With background level lower than DAMA

- Eliminate non-DM effects
 - > Two-site experiment, on two hemispheres
- Use ultra-pure NaI(Tl) crystals
 - > Use of purified NaI powder to grow crystals

SABRE TWO-SITE EXPERIMENT

SABRE North at Laboratori Nazionali del Gran Sasso (LNGS) in Italy

SABRE South at Stawell Underground Physics Laboratory (SUPL) in Australia

Why two locations?

Seasonal effect

SABRE North location

DAMA/LIBRA

SABRE

GOAL: background level lower than DAMA (~1 cpd/kg/keV) (in ROI)

- SABRE Proof-of-principle (PoP) and PoP-dry already achieved a background of ~ 1 cpd/kg/keV
 We aim to reach ~ 0.5 cpd/kg/keV
- Strategy to lower the background:
 - For internal backgrounds: → **zone refining**
 - For external background:
 - → SABRE North: improved passive shielding
 (LNGS restrictions on liquid scintillators use)

→ **SABRE South**: Liquid Scintillator (LAB) + Muon Veto

SABRE CRYSTALS

Vertical Bridgman method for clean crystal growth - optimized in collaboration with Radiation Monitoring Devices Inc. (RMD). Crystal grows in fused silica vessel.

SABRE CRYSTALS

POWDER

Astrograde powder developed in collaboration with Sigma-Aldrich (now Merck). Now available commercially

ZONE REFINING as a method to purify NaI powder further.

Vertical Bridgman method for clean crystal growth - optimized in collaboration with Radiation Monitoring Devices Inc. (RMD). Crystal grows in fused silica vessel.

SABRE CRYSTALS

2015 2018 2019 2022 2023 2025

background ~ 1 cpd/kg/keV

→ first NaI crystal since DAMA/LIBRA with such low background

grown from chunks (NaI-40) rather than powder

- → demonstrated same optical quality
- → important result for zone-refining

NaI-42

powder after **ZR**

→ first crystal for physics run

C-1 crystal

15 kg of pure NaI powder given in-kind from COSINE-200 Collaboration

Crystal after cutting & polishing

Powder	³⁹ K	⁸⁸ Sr	⁸⁵ Rb	¹³³ Cs	¹³⁸ Ba	⁶⁵ Cu	²⁰⁸ Pb
	[ppb]	[ppb]	[ppb]	[ppb]	[ppb]	[ppb]	[ppb]
Cosine-200	12.5	<0.8	<0.3	6	1.2	82±3.5	0.6
Astrograde (SABRE)	~4-18	0.3	< 0.4	< 1	3.6	79.4±2. 8	~1

Powder screening at LSC by ICP-MS

This collaboration program is part of the MoU between Center for Underground Physics at IBS (CUP-IBS) in South Korea and INFN

Final mass: 3.65 kg

C-1 crystal

Preliminary results:

Asymptotic ²¹⁰Po **<0.47** [mBq/kg]

²¹⁴Bi-Po: U eq ~ **0.7** [ppt]

²¹²Bi-Po: Th eq ~ **0.2** [ppt]

Crystal is currently under measurement @LNGS

- still active cosmogenics

Crystal encapsulated by RMD and shipped to LNGS

- Zone refining technique successfully used in semiconductor industry
- Impurities are segregated to one side of the ingot by moving annular ovens
- Tested on NaI Astrograde powder by Princeton group at Mellen company, Concord, NH (USA)

test runs with *Astrograde* NaI powder have been performed at MELLEN, Concord NH, USA.

Zone refiner

tail

Isotope	Impurity concentration (ppb)					
	Powder	S_1	S_2	S_3	S_4	S_5
³⁹ K	7.5	< 0.8	< 0.8	1	16	460
⁸⁵ Rb	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.7
²⁰⁸ Pb	1.0	0.4	0.4	< 0.4	0.5	0.5
^{24}Mg	14	10	8	6	7	140
¹³³ Cs	44	0.3	0.2	0.5	3.3	760
¹³⁸ Ba	9	0.1	0.2	1.4	19	330

tip

1 pass 5 passes 10 passes 25 passes Relative concentration 10⁻³ Normalized position 0.2 0.8 tip tail

w/L=0.1, k=0.5

Phys. Rev. Applied 16, 014060 (2021)

Sample	³⁹ K [ppb]	⁶⁵ Cu [ppb]	⁸⁵ Rb [ppb]	¹³³ Cs [ppb]	¹³⁸ Ba [ppb]	²⁰⁸ Pb [ppb]
powder	7	5	0.2	1	3.6	1.1
Zone 1	<4	<4	<0.8	<0.3	<0.3	2.0±0.3
Zone 2	<4	<4	<0.8	<0.3	1.2±0.3	1.6±0.2
Zone 3	10.1±0.6	<4	<0.8	<0.3	2.7±0.2	1.6±0.3
Zone 4	21.5±0.7	<4	<0.8	1.1±0.1	8.1±0.5	1.9±0.3
Zone 5	68±2	10±1	<0.8	203±6	17±0.9	1.2±0.3

ZR test Run4

Test runs 2023-2024

Distribution coefficient, $k = C_s / C_l$

Concentration in solid phase

Concentration in liquid phase

If k<1 - solute "prefers" to stay in liquid phase

From test data we can fit the **distribution coefficients** (k) of different isotopes (K, Pb, Ba, Kr, Sr, Mg) for concentrations much lower than literature data (10-100ppm)

Expected background in SABRE crystals

Source	Rate in ROI [1,6] keV [cpd/kg/keV]
⁴⁰ K	0.025
²¹⁰ Pb bulk	0.353
²¹⁰ Pb reflector bulk	0.005
²¹⁰ Pb reflector surface	0.060
³ H	0.033
129	0.003
238	0.005
²³² Th	0.0004
PMT	0.009
Other backgrounds	0.01
TOTAL	o.50 ~ 0.5 cpd/kg/keV

- Using spectral fit from NaI-33 measurements
- With applied reduction from zone refining
- Spectrum from Monte Carlo

Problem with Pb

From data $k > \sim 1 \rightarrow Pb$ cannot be removed with ZR

Best fit $k = 1.15 \pm 0.03$

SABRE NORTH SHIELDING

- Experimental area @LNGS is ready
- Shielding design is ready
- Array of 9 x 5 kg crystals
- Each crystal in a Cu enclosure
- Crystals inside a Cu box 5mm thick
- Flushed with HPN₂

- · 3 Cu layers with decreasing radiopurity
- · One 10 cm thick PE U-shaped layer
- · One 10 cm thick Cu U-shaped layer
 - Outer PE slabs 40 cm on top and sides and 60 cm on the bottom
- · 3m x 3m Cu basement with 10 cm thickness

SABRE NORTH SHIELDING

Source	Contribution in the ROI (1-6 keV) [dru]
Internal: NaI + PMTs + PTFE	0.5
Enclosure: Copper + Delrin parts	0.032
Shielding: Inner copper + Outer copper (negligible) + PE (negligible)	0.01
External gammas + neutrons (negligible)	0.001

Fully passive shielding design: 25 cm copper + 50 cm PE

- → enough shielding power
- → negligible contribution to the total background

SABRE

Expected sensitivity on S_m

→ Assuming background 0.5 dru in ROI and negligible cosmogenics contribution

45 kg mass allows 4σ statistical sensitivity to DAMA-like signal in 3 years assuming negligible cosmogenic activity

SUMMARY

- Goal of SABRE experiment is to search for annual modulation with two nearly identical NaI(TI) detectors in the Northern and Southern Hemisphere
- Background level of ~0.5 cpd/kg/keV is within reach with ZR
- Crystal production is ongoing

 → first crystal expected early 2026
- Physics data taking will start in 2028
- We expect to exclude/confirm annual modulation within 3-5 years

Thank you for your attention!

← See also the poster

backup slides

Cosmogenic backgrounds

T _{1/2}
1.57x10 ⁷ yr
12.3 yr
2.6 yr
1.3 yr
164 d
115 d
119 d
106 d
59 d
57 d
19 d

- Cosmogenic activation in the ROI mainly comes from ³H, ¹¹³Sn, ¹⁰⁹Cd, ²²Na
- Can be used for low energy calibrations: 0.87 keV (²²Na), 25.5 keV, 3.5 keV (¹⁰⁹Cd), 30.5 keV (¹²¹Te), 67.8 keV (¹²⁵I)
- Minimum 1 year of "cooling" underground is required
- In the future: underground growth?

SABRE NORTH PASSIVE SHIELDING

NaI-33 was measured with and without the LS active veto

K-40 contamination of less than a few ppb does not require necessarly the LS active veto

PoP-dry: only Cu shielding (30 cm)