

Search for Dark Matter spectral lines around the Galactic Centre with CTAO LST-1

Tomohiro Inada (Kyushu Univ)
S. Abe, A. Abhishek, M. Doro, M. Teshima,
G. Verna, S. Ventura
on behalf of the CTAO-LST Collaboration

High energy phenomena in the universe

Origin of Cosmic Rays

Supernova Remnant

Supermassive Black Hole

Bounds on Lorentz Invariance Violation

Gamma Ray Burst

Active Galactic Nuclei

Binary / Nova

Dark Matter Search

There are plenty of interesting topics in High Energy Universe

We focus on the Dark Side of the Universe

Exposure of instruments for High-Energy Photons toward DM searches

ε: Effective area

T: Observation time

Nb of detected photons:

$$\propto \Phi \times \epsilon \times T$$

Disclaimer:

- one of the many ways to compare instruments
- for some DM
 searches, FoV or
 energy resolution can
 be critical as well

Exposure of instruments for High-Energy Photons toward DM searches

ε: Effective area

T: Observation time

Nb of detected photons:

$$\propto \Phi \times \epsilon \times T$$

Disclaimer:

- one of the many ways to compare instruments
- for some DM searches, FoV or energy resolution can be critical as well

High Energies: dramatic improvement is expected within next decade

Cherenkov Telescope Array Observatory

Upcoming ground-based gamma-ray telescope: Two arrays of Cherenkov telescopes in **Chile/La Palma**

14 Medium-Sized Telescopes

+2 Large-Sized Telescopes due to

CTA+ program (C. Aramo RICAP 2025)

37 Small-Sized Telescopes

Over 100 telescopes, About 1500 scientists and engineers,
 About 200 institutes

LST-1 is in operation

The first Large-sized Telescope (LST-1)

- Located at Roque de los Muchachos, La Palma, Spain
- 23m diameter mirror—delivering greater sensitivity for low energies
- Wide field of view (~4.5°) enables efficient mapping of extended regions, ideal for dark matter and Galactic Center studies
- Three more LSTs of CTAO North array are in the construction (will complete next year)

Expected gamma-ray flux from DM annihilation/decay

Annihilation
$$\frac{d\Phi^{ann.}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{\sigma v}{2m_{\chi}^{2}} \times \sum_{i} Br_{i} \frac{dN_{\gamma}^{i}}{dE} \times \left[\int_{\Delta\Omega} \int_{los} ds \; \rho^{2}(s, \Omega) \right] \qquad \chi \longrightarrow \int_{SM}^{SM}$$
Decay
$$\frac{d\Phi^{dec.}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{1}{m_{\chi} \tau_{\chi}} \times \sum_{i} Br_{i} \frac{dN_{\gamma}^{i}}{dE} \times \left[\int_{\Delta\Omega} \int_{los} ds \; \rho(s, \Omega) \right] \qquad \chi \longrightarrow \int_{SM}^{SM}$$

Particle physics term

 σv : annihilation cross-section, τ : lifetime

 $m\chi$: Mass of DM particle

BR_i: branching ratio of each channel

dNi/dE: differential gamma-ray yield of each channel

Continuum spectra

Sharp cut off at DM masses

Line-like emission

clear peak, no contamination astrophysical component

Expected gamma-ray flux from DM annihilation/decay

Annihilation
$$\frac{d\Phi^{ann.}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{\sigma v}{2m_{\chi}^2} \times \sum_{i} Br_{i} \frac{dN_{\gamma}^{i}}{dE} \times \left[\int_{\Delta\Omega} \int_{los} ds \; \rho^{2}(s, \Omega) \right] \qquad \chi \longrightarrow \int_{SM}^{SM}$$
Decay
$$\frac{d\Phi^{dec.}}{dE_{\gamma}} = \frac{1}{4\pi} \frac{1}{m_{\chi} \tau_{\chi}} \times \sum_{i} Br_{i} \frac{dN_{\gamma}^{i}}{dE} \times \left[\int_{\Delta\Omega} \int_{los} ds \; \rho(s, \Omega) \right] \qquad \chi \longrightarrow \int_{SM}^{SM}$$

Astrophysics term

ρ: dark matter density (source-dependent)J-factor: Integrated DM density along the line of sight (in case of decay, called "D-factor")

Motivation for Gamma-ray Line signal searches

- Clear peak at DM mass: No astrophysical contamination
- Loop-suppressed by α^2 (i.e. the fine-structure constant)
- Some heavy DM (e.g. SUSY) models enhance their annihilation rate, called Sommerfeld enhancement

Benchmark models

Weak Eigenstates

Bino (M_1) :

 $ilde{B}$

Winos (M₂):

 $\tilde{W}^0, \tilde{W}^{\pm}$

Higgsinos (µ): $\tilde{H}_u^0, \tilde{H}_d^0, \tilde{H}_u^+, \tilde{H}_d^-$

mix

Neutralinos: $\tilde{\chi}_{1,2,3,4}^0$

Charginos: $\tilde{\chi}_{1,2}^{\pm}$

The sensitivity in the TeV-scale is a key ingredient

The Galactic Centre from North

- The Galactic Centre is considered as a southern source - no results from north for DM for 15 years
- But past years, MAGIC in La Palma demonstrated the potential for the GC observation with largezenith angle observation
 - Can be significantly impacted by instrumental systematics, care required
 - Not a simple observation

Continuum spectra searches arxiv:2111.01198

Target	Year	${f Time}\left[{f h} ight]$	IACT	Limit	Ref.					
The Milky Way central region & halo										
MW Centre	2004	(48.7)	H.E.S.S.	Ann.	Aharonian et al. (2006)					
MW Inner Halo	2004 - 2008	(112)	H.E.S.S.	Ann.	Abramowski et al. (2011)					
	2010	9.1		Ann.	Abramowski et al. (2015)					
	2004 - 2014	254		Ann.	Abdallah et al. (2016)					
	2014 - 2020	546	$\mathrm{H.E.S.S.}^{\dagger}$	Ann.	Montanari et al. (2021)					
	L	15 years								

		Line se	earches		
MW Inner Halo	2004 - 2008	(112)	H.E.S.S.	Ann.	Abramowski et al.
					(2013c)
	2014	15.2	$H.E.S.S.^{\dagger}$	Ann.	Abdalla et al. (2016)
	2004 - 2014	(254)	H.E.S.S.	Ann.	Abdalla et al. (2018b)
	2013 - 2019	204	MAGIC	Ann.	Inada et al. (2021)

DM line searches

MAGIC Collaboration, Phys. Rev. Lett. (2023)

The GC Observation with LST-1

- **Key experimental fact:**
 - IACT performance depends on zenith angles because of difference in a shower distance
- Large zenith angle observation
 - Energy threshold: worse
 - Energy resolution: worse
 - Effective collection area: **better**
 - Good for higher energetic events

Extended Sources Analysis with LST-1

- Effective area stays > 10⁵ m² for higher energies up to 2° from camera center
- Allows using wider region of interests (ROIs) and improves sensitivity for extended regions

Allows studying wider region around GC for DM search (upto 1.8° ROI), than MAGIC-2022 (<1.1° ROI)

Signal and Background modeling

• Simulations of 40h – At GC using LST Instrumental Response Functions (IRFs)

Count spectra summed over 1.8° ROI : the residual CR bkg is dominant

Analysis Overview

- Search for a peak on 'smooth' counts spectrum majorly dominated by background
- Compute expected limits on DM parameter: annihilation cross-section $<\sigma v>$
- Study systematics from background modelling using OFF-source data

Control sample for systematics

Off source data for systematics assessment

Systematics – background modelling in OFF source data

- LST-1 observations at LZA and dark conditions
 - mimicking GC observations
- Q-factor -based optimized cuts for event selection

- Optimised cut verified reproducing Crab SED
 - consistent with the previous studies within 25%
- OFF counts spectrum curvature effect studied using log parabola fit to counts

Results: systematics in background modeling

Analysed 6.8h of OFF source data – systematics from PL modelling of background

- Curvature effect (β for log parabola fit) within the window width $[E/(1+\sigma_E)^{\mu}, E(1+\sigma_E)^{\mu}]$,
- $\beta \neq 0$ affecting DM line sensitivity (relative to $\beta = 0$) $\Phi(E) = \Phi_0(\frac{E}{E_0})^{-\alpha \beta \times \log(\frac{E}{E_0})}$
- Estimating systematic uncertainty of 10%, 20% and 30% for 3, 4, and $5\sigma_E$ width at 3 TeV

Results: DM line sensitivity

- Explored both, cuspy (Einasto) and cored (Burkert) types of DM density profiles
- LST-1 shows potential in probing SUSY DM models
 - like Higgsino and Wino at ~ 1.1 TeV and ~3 TeV respectively
 - 4 LSTs array would improve this sensitivity significantly

 $[\text{GeVcm}^{-1}] (0) = \frac{10^{-1}}{10^{-2}}$

Core

Summary

- Our study with LST-1 could provide more stringent constraints on DM line signals at higher energies, among the current IACTs
- This study on systematics from modelling and analysis methods could be used to define an energy dependent sliding window for more robust limits
- Our aim is to probe SUSY models using LST-1 with more exposure in the coming years
- Upcoming LST array would be crucial in better background rejection and probing lower mass DM candidate like Higgsino

Back Up